

INVERTER **FR-E800**

GLOBAL IMPACT OF MITSUBISHI ELECTRIC

Through Mitsubishi Electric's vision, "Changes for the Better" are possible for a brighter future.

Changes for the Better

We bring together the best minds to create the best technologies. At Mitsubishi Electric, we understand that technology is the driving force of change in our lives. By bringing greater comfort to daily life, maximizing the efficiency of businesses and keeping things running across society, we integrate technology and innovation to bring changes for the better. Mitsubishi Electric is involved in many areas including the following

Energy and Electric Systems

A wide range of power and electrical products from generators to large-scale displays.

Electronic Devices

A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance

Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems

Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems

Maximizing productivity and efficiency with cutting-edge automation technology.

Features	4	
Operation Panel, Operation Steps	36	
Parameter List	38	
Protective Functions	52	
Standard Specifications	56	
Outline Dimensions	59	
Terminal Connection Diagram, Terminal Specifications	60	
Example Connections	64	
Options	66	
Low-Voltage Switchgear/Cables	86	
Precaution on Selection and Operation	92	
Compatible Motors	98	
Compatibility	102	
Warranty	109	
Support	112	

Design future manufacturing

FR-E800—World's smallest class inverter with high functionality

Ever since the Industrial Revolution, manufacturing technologies have evolved over the years. And now, this is the time for new revolution. A new era has started. Inverters are connected to the world. We design future manufacturing and what's ahead.

E800-EEthernet modelE800-SCESafety communication model

Real-time connection with the host IT system enables centralized or remote monitoring of operation, which further streamlines the production.

1 Improving usability by supporting CC-Link IE TSN as star	ndard	
Real-time production data can be collected using efficient protocols, and multiple protocols are supported on the same network, which provides a smart connection solution with various devices.	CC-Línk lE TSN	>> P13
2 Expanding a range of applications with multi-protocols		
Multi-protocol support enables switching between various types of communication networks. Inverter models that support protocols of major global industrial Ethernet networks	EtherNet/IP PROFINET EtherCAT, etc.	>> P13
are available. 3 Enabling flexible connection with two Ethernet ports		
There is no need to use a switching hub.	Two Ethernet ports	>> P14

Al technology and smartphone connectivity support initial startup or troubleshooting. Extensive maintenance functions will contribute to improvement in maintainability.

1 Reducing downtime using the AI function		
The AI fault diagnosis function is used to identify the cause of a fault, enabling the fastest troubleshooting procedure.	Al fault diagnosis	>> P27
2 Enhancing predictive maintenance		
Integrating the world's first* ¹ "Corrosive-Attack-Level Alert System"*2 makes it possible to identify signs of inverter damage caused by corrosive gas. The environmental impact diagnosis function for the control circuit board enables visualization of the environment where the inverter is installed, enhancing maintainability and preventing faults.	Environmental impact diagnosis function	>> P24
 *1: According to our investigation as of September 10, 2019. *2: Patent pending. 		
3 Further facilitating operation with your smartphone		
Using smartphones or tablets, you can scan the QR code on the product to access the setup information, or you can access inverters via wireless remote network with a mobile app. This will contribute to reduction in startup time and improvement in maintainability.	Engineering software	>> P28

Safety


Advanced harmony between humans and FA devices

Performance

ESD/

Various solutions achieved by the outstanding drive performance

Functional safety functions and wireless inverter connection enable stable and safe operation of the system.

1 Reducing the costs for safety		
The inverter is compliant with safety integrity level (SIL) 2 or 3 of the IEC 61508 standard for functional safety.	Functional safety	>> P21
2 Attaining both safety and productivity		
Functions conforming to IEC 61800-5-2 ensure safe operation for users.	SLS function*1 (Safely-limited speed)	>> P21
3 Ensuring operators' safety by wireless interfaces		
Adjustments of inverter parameters and inverter monitoring can be performed wirelessly away from the system, ensuring operators' safety.	Ethernet connection* ¹	>> P20

*1: Several conditions must be met to use this function.

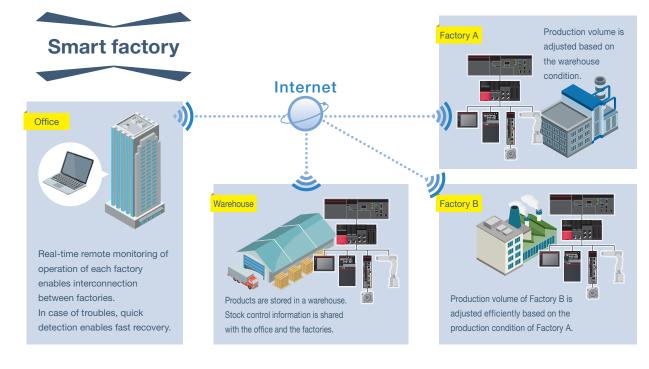
Various control methods are supported to expand applications in many systems.

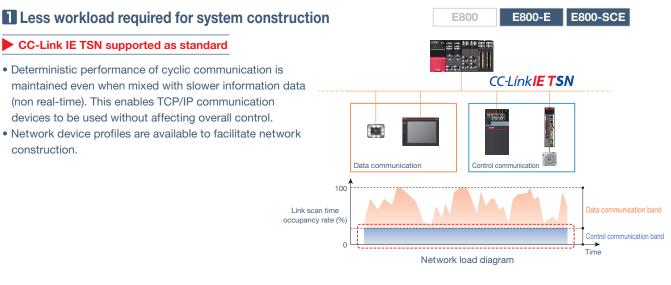
1 Supporting various control	ol methods		
Various control methods such as Vector ovector control (without encoder), and p		Control method	>> P1
supported. Premium efficiency motors ar applications in various solutions.	nd PM motors are supported, enabling		
2 Expanding applications w	vith the enhanced product line		
The product line is enhanced as compared • 18.5 kW / 22 kW supported • 575 V class supported • Surrounding air temperature of -20°C to 60°C*1	 to the preceding FR-E700 inverters. Compliance with IEC 60721-3-3(3C2)*2 for corrosive gas concentration IP67 models (FR-E846) 	Extended capacity range / improved environmental resistance	>> P1

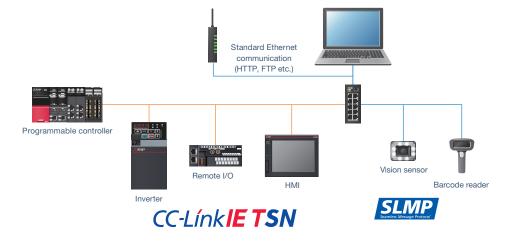
*1: Derating required for 50°C or higher.

*2: Coated model (-60) only

Useful functions for each of the design, operation, and maintenance processes of systems


FR-E800 inverters have various functions to attract more customers by offering safe and reliable operation for a long time. This is the time to start innovation in the fields of manufacturing.


	1	Supporting various networks enable flexible system design.	P12-15
Design	2	Wide range of applications The extended range of capacities and dimensions supports various applications.	P16·17
	3 3	Higher added values The outstanding drive performance and various functions create higher added values.	P18·19
Operation	4	Humans and FA devices can work together by enhancing functional safety.	P20·21
Operation	5 4	Energy saving Use of induction motors or IPM motors contributes to energy saving.	P22·23
	6 1	Functions for residual life diagnosis, predictive maintenance, and preventive maintenance support stable system operation.	P24·25
Maintenance	7 9	Downtime reduction When a fault occurs, AI analysis and other diagnosis functions solve the problem quickly.	P26·27
Engineering tools	8	Engineering software for further ease of operation The work efficiency can be improved for each of the design, operation, and maintenance processes.	P28-31


Supporting various networks enable flexible system design.

• Non-FA devices that support SLMP and TCP/IP communication can also connect to the network. Inverters can connect to a variety of devices, enabling use with versatile devices.

Compatibility with global networks

Multi-protocols

Inverter models that support protocols of major global industrial Ethernet networks are available.

FR-E800 inverters support a variety of open networks without using any options, enabling the use of inverters on the existing network and assuring compatibility with various systems. Users can select a protocol group suitable for the intended system. It is possible to switch between protocols only by setting parameters. (Supported protocols differ depending on the model.)

Model	CC-Link IE TSN (100 Mbps)*1	CC-Link IE Field Network Basic	MODBUS®/TCP	PROFINET	EtherNet/IP	BACnet/IP	EtherCAT
FR-E800-[]EPA	•	•	•	—	•	•	—
FR-E800-[]EPB	•	•	•	•	_	—	_
FR-E800-[]EPC	-	—	—	_	_	_	0
*1.1 Chos is optional (to b							

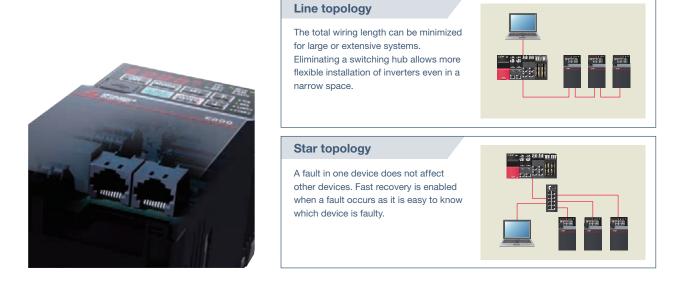
Supported protocols

*1: 1 Gbps is optional (to be supported)

Supported O: To be supported soon

Supporting various networks enable flexible system design.

3 Supporting various topologies

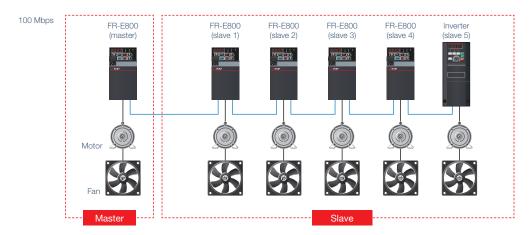


Two Ethernet ports

Two Ethernet ports are provided as standard, enabling flexible connection in line topology without using a switching hub. (A compatible master module is required for ring topology.)

Complex networks can be created just by connecting devices with a cable to a free port.

The network can even accommodate changes in the specifications of devices.

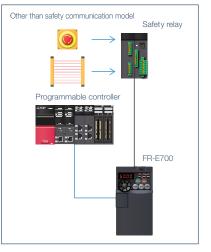


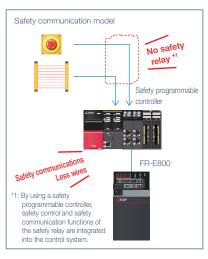
Enabling construction of a small-scale synchronous system of inverters

E800 E800-E E800-SCE

Inverter-to-inverter link function

Communication between multiple inverters is carried out through the I/O device and special register transmission of the PLC function (refer to page 18). A small-scale system can be created by connecting multiple inverters via Ethernet. (The FR-A800-E inverter or the FR-F800-E inverter can be mixed in the system.)


5 Simple configuration with less wiring using safety communication models


E800 E800-E E800-SCE

Safety communication model To be supported soon

Safety communication models support Ethernet-based safety communication protocols certified as compliant with international standards. The safety control system on the existing network can be easily enhanced with less cost.

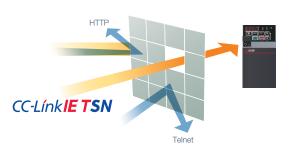
- CC-Link IE TSN Safety Function
- PROFIsafe
- CIP Safety
- FSoE (Safety over EtherCAT)

6 Security measures

Ethernet IP filtering function

Set the IP address range for connectable network devices to limit connectable devices.

The Ethernet IP filtering function is a means to prevent unwanted access from external devices, but it does not prevent it completely.



Ethernet command source selection

Devices which can control the inverter can be limited by setting the IP address range of the network device(s) used to operate it.

Ethernet function selection

Communication sockets are created only for selected applications such as CC-Link IE TSN or MODBUS/TCP to prevent unwanted access.

Wide range of applications

The extended range of capacities and dimensions supports various applications.

Supporting various systems and environments

Extended capacity range To be supported soon

The product line will be extended to include 18.5K and 22K inverters. This will allow use of inverters in large-scale systems.

Increased environmental resistance

Various applications are supported by allowing for corrosive environments or a wide range of surrounding air temperatures.

- Surrounding air temperatures between -20°C and 60°C^{*1} are supported. (-10°C to +50°C for the FR-E700)
- Inverters with circuit board coating (IEC 60721-3-3(3C2))*² are available for improved environmental resistance.

*1: Derating required for 50°C or higher. *2: Coated model (-60) only.

E800 E800-E

E800-SCE

Water treatment plant

Painting line

2 Effective solution for downsizing equipment

Multiple rating

Two rating types of different rated current and permissible load can be selected by setting parameters. The choice of inverters is widened for intended applications of users. When users select the LD rating for light duty applications, inverters with smaller capacities can be used as compared to the FR-E700 series inverters. For example, when the LD rating (light duty) is selected for a 22K inverter, the inverter can drive a motor with a capacity up to 30 kW.

Load		Overload current rating
Light duty	LD rating	120% 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C
Normal duty	ND rating	150% 60 s, 200% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C

Optimizing the layout inside the enclosure

Flexible installation

When the surrounding air temperature is 40°C or less, multiple inverters can be installed side-by-side. Users can select the most suitable layout for the intended installation area.

Side-by-side installation

4 Enabling installation in various environments

► IP67 models (400 V class: 0.75K to 3.7K) To be supported soon

Installation outside of the enclosure enables installation closer to machines (FR-E846). Since the inverter is compatible with hostile environments such as high humidity and dusty environments, users can easily install the inverter near the machine or in available spaces.

It is possible to reduce line noise by shortening the wiring length between the inverter and the motor.

the wiring length between the Automotive production line

5 Improving productivity with shorter tact time by the enhanced regeneration function

Built-in brake transistor

With the enhanced power regeneration capability (brake duty: 100% max.), deceleration time can be shortened. \star_1

- *1 : For 200 V class 0.4K and 0.75K models, the brake duty is 30% ED maximum when the lowest resistance value is used. The brake resistor must have a sufficient capacity to consume the regenerative power. For 200 V class 0.1K and 0.2K models, brake transistors are not built in.
- Increased excitation deceleration
 To be supported soon

When the increased magnetic excitation deceleration function is used, the motor consumes the regenerative power and the deceleration time can be reduced without using a brake resistor. The tact time can be reduced for a transfer line or the like.

Automotive production line

Airport baggage conveyor

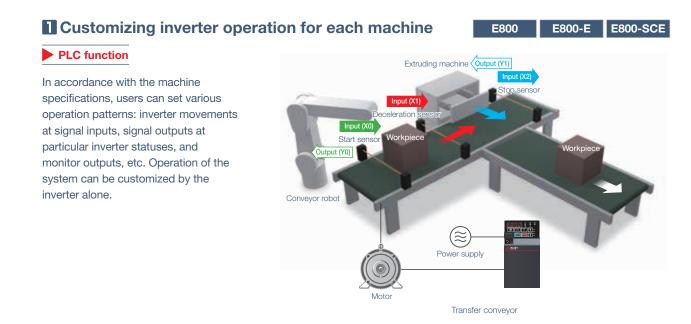
E800-E E800-SCE

E800

E800

Building water pumps

E800-E


E800-SCE

Besign Higher added values

The outstanding drive performance and various functions create higher added values.

2 Same spare inverters for various applications

Control method

Switching between control methods with the FR-E800 inverter, Vector control for lift application (with the plug-in option), Advanced magnetic flux vector control for conveyors, etc., reduces the number of required spare inverters. PM sensorless vector control is available when inverters are used with PM motors. High-level control such as positioning control is enabled without using an encoder (to be supported).

Offline auto tuning

Sensorless operation can be performed with non-Mitsubishi Electric general-purpose (induction) motors^{*1} and permanent magnet (PM) motors^{*1} as well as Mitsubishi Electric induction motors and PM motors.

Users can use existing motors with new inverters.

*1: Tuning may be disabled depending on the motor characteristics.

PM sensorless vector control

The torque is not reduced in the high-speed range (up to the rated speed) during PM sensorless vector control as compared with operation using a stepper motor. High-speed system operation improves the tact time.

Expanding the range of applications using inverter options

Plug-in options

In addition to the existing plug-in options to add digital inputs / analog outputs and to support different communication standards, the Vector control compatible option FR-A8AP E kit is supported. Among our compact inverters, the FR-E800 inverter is the first to support Vector control.

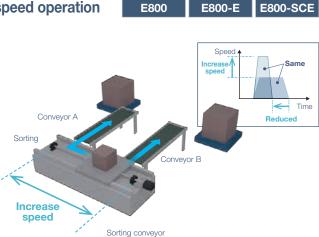
	FR-E800 inverter options	
Model	Description	Supported
FR-A8AX E kit	16-bit digital input	•
FR-A8AY E kit	Digital output, additional analog output	•
FR-A8AR E kit	Relay output	•
FR-A8AP E kit	Vector control, encoder feedback control	0
FR-E8DS E kit	24VDC input	0
FR-A8NC E kit	CC-Link	•
FR-A8ND E kit	DeviceNet	0
FR-A8NP E kit	PROFIBUS-DP	0

E800

•: Supported O: To be supported

E800-SCE

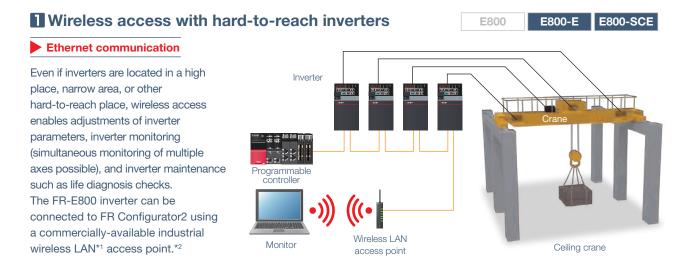
E800-E


Control	Speed control	Torque control	Position control	Motor
V/F control	٠	-	-	
Advanced magnetic flux vector control	•	-	-	Induction
Real sensorless vector control	٠	٠	-	motor
Vector control (with plug-in		0	0	motor
option FR-A8AP E kit used)	0	0	0	
PM sensorless vector control	٠	-	0	PM motor
	•	: Supporte	ed O: To	be supported

E800-E

E800-SCE

E800



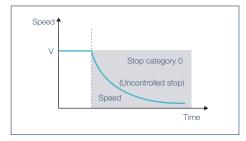
Humans and FA devices can work together by enhancing functional safety.

*1: A wireless LAN suitable for the industrial use in severe environments or in environments requiring high reliability (redundancy).

*2: Under certain environments or installation conditions, Ethernet communication through wireless LAN is not as stable as communication through wired LAN. Before starting operation, always check the communication status. Inverter operation (output shutoff, deceleration stop, etc.) when communication fails (due to reasons such as disconnection) can be selected by setting parameters. For applications requiring data transmission or update periodically or within a certain time period, a wired connection is recommended.

2 Attaining both safety and productivity

Functional safety

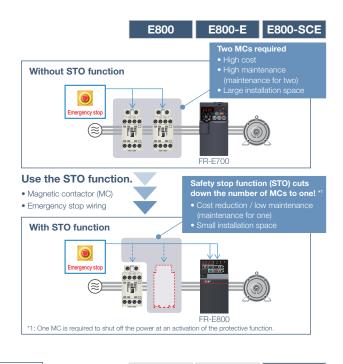

The inverter is compliant with safety integrity level (SIL) 2 or 3 of the IEC 61508 standard for functional safety. This will contribute to reduction in the initial safety certification cost.

The inverter supports various safety functions (IEC 61800-5-2),

contributing to eliminating external devices or reducing maintenance time. (Note that several conditions must be met to use safety functions.) This will significantly reduce time required for maintenance or tooling and eliminate external devices such as ones used for monitoring the speed.

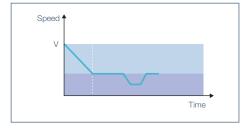
STO (safe torque off) function

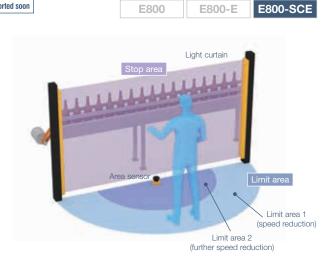
Driving power to the motor is electronically shut off by responding to the input signal from external equipment.



FR-E800 SIL2, PLd, SIL2. PLd. SIL3. PLe. Functional safety category (ISO 13849-1, IEC 61508) Cat.3 Cat.3 Cat.3 Safety torque off, coasting to stop SS1 Safe stop 1, deceleration stop SLS Safely-limited speed SBC Safe brake control SSM Safe speed monitor

E800


-: Not supported •: Supported O: To be supported


E800-E E800-SCE

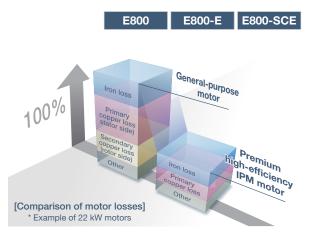
SLS (safely-limited speed) function To be supported soon

Function to monitor the speed so that the predetermined speed limit is not exceeded. The motor speed is calculated without using an encoder. This will contribute to wire and cost savings. Several conditions must be met to use this function.

Coperation Energy saving

Use of induction motors or PM motors contributes to energy saving.

Energy saving with motors

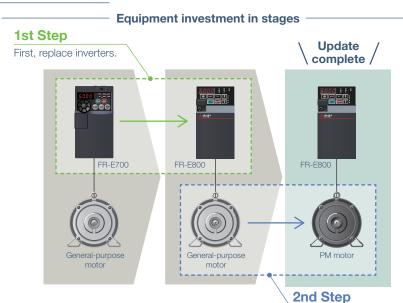

PM motor

The PM motor achieves even higher efficiency as compared to the general-purpose motor.

The setting for driving PM motors is enabled just by setting parameters.

Why is a PM motor so efficient?

- No current flows to the rotor (secondary side), and no secondary copper loss is generated.
- Magnetic flux is generated with permanent magnets, and less motor current is required.



Supporting step-by-step energy saving solution

E800 E800-E E800-SCE

Compatibility with both induction motors and PM motors

Further energy saving operation is enabled by using IE3/IE4 induction motors or permanent magnet embedded (PM) motors. FR-E800 inverters support both induction motors and PM motors, enabling step-by-step replacement of existing devices. Users can replace inverters first and then motors. There is no need to replace them all at once.

3 Energy saving with inverters

Advanced optimum excitation control To be supported soon

A large starting torque can be provided with the same motor efficiency under Optimum excitation control. Without the need of troublesome adjustment of parameters (acceleration/deceleration time, torque boost, etc.), acceleration is done in a short time. Also, energy saving operation with the utmost improved motor efficiency is performed during constant-speed operation.

When Advanced magnetic flux vector control is selected, Advanced optimum excitation control is available.

Energy saving monitoring

The energy saving effect can be checked using an operation panel, output terminal, or network.

The output power amount measured by the inverter can be output in pulses. The cumulative power amount can be easily checked.*1

*1: This function cannot be used as a meter to certify electricity billings.

Energy saving with the regenerative option

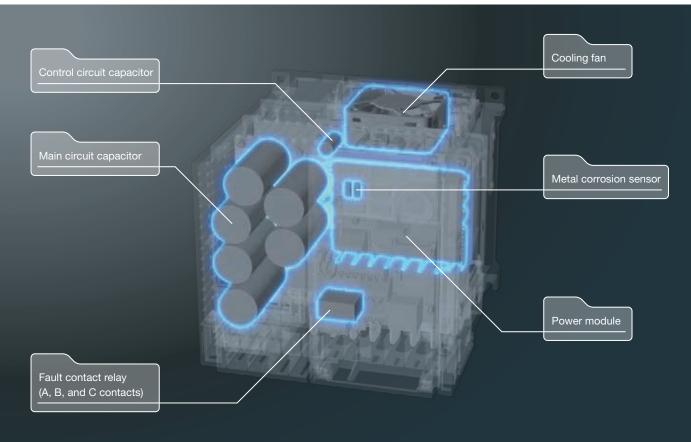
Power regeneration function (optional)

While the motor rotates to drive the machine during power driving, the machine rotates the motor during regenerative driving, which results in energy saving since the motor serves as a generator which returns the power to the power supply. By using the multifunction regeneration converter (FR-XC) as a common converter, the power returned from an inverter during regenerative drive can be supplied to another inverter, which in turn saves energy.

E800

Next, replace motors.

E800-E E800-SCE



converter

Maintenance Improved maintainability

Functions for residual life diagnosis, predictive maintenance, and preventive maintenance support stable system operation.

Example: FR-E840-3.7K

Supporting scheduled maintenance planning

Environmental impact diagnosis function

The world's first*1 Corrosive-Attack-Level Alert System*2 makes it possible to identify signs of inverter damage caused by hydrogen sulfide or other corrosive gas. Equipment downtime will be reduced as the function notifies operators when the production environment needs to be improved (for coated models (-60) only).

*1: According to our investigation as of September 10, 2019. *2: Patent pending.

Enhanced life diagnosis function

Availability of life diagnosis checks is extended. This enhanced diagnosis function ensures reliable operation of the system.

The design life of cooling fans and capacitors has been extended to 10 years*³.

*3: Surrounding air temperature: annual average 40°C (free from corrosive gas, flammable gas, oil mist, dust and dirt) Output current: 80% of the inverter ND rating

Since the design life is a calculated value, it is not a guaranteed value.

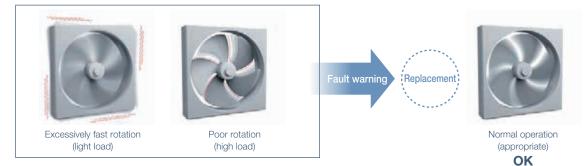
Sewage treatment plant

Extended Main circuit capacitor residual-life estimation

- Inverter fault contact relay
- (A, B, and C contacts) life diagnosis*4
- Display power cycle life diagnosis
- Control circuit capacitor life diagnosis
- Cooling fan life diagnosis
- Inrush current limit circuit life diagnosis

*4: Terminals A, B, and C of the inverter

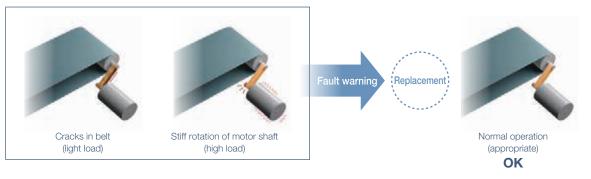
2 Real-time monitoring for early fault detection


Load characteristics fault detection function

When a mechanical fault such as clogging of the filter occurs, the inverter outputs a warning or shuts off the output to prevent system damage.

The speed-torque characteristic is stored while no fault occurs, enabling comparison between the measured data and the stored data.

E800


E800-E E800-SCE

Current detection function

Faults caused by stiff rotation of motor shaft (increased load) or cracks in the belt (decreased load) can be detected through the motor output current.

If the output current exceeds the predetermined value, a signal is output to inform the user of the faulty device.

Supporting preventive maintenance of peripherals

Maintenance timer

The Maintenance timer signal is output when the inverter's cumulative energization time reaches the time period set with the parameter. This can be used as a guide for when the maintenance of the equipment should be conducted.

4 Thorough customer support

FA Center network

Our global network offers reliable technical support and customer satisfaction. (Refer to page 112.)

E800-E

E800-SCE

E800

Setup information web page

Our setup information web page provides easy access to manuals, videos, and outline dimension drawings.

Naintenance Downtime reduction

When a fault occurs, AI analysis and other diagnosis functions solve the problem quickly.

Streamlining the installation process

Compatible installation size E800 E800-E E800-SCE

The installation size was determined to assure exchangeability with the FR-E700 series. Installation interchange attachment options are available for facilitating replacement with the models of different size (FR-E820-3.7K, FR-E840-0.4K/0.75K/1.5K).

2 Quick reaction to troubles

Power supply from USB port E800 E800-E E800-SCE

With the power supplied from the computer (USB bus power connection)^{\star 1}, parameters can be set while the main circuit power supply is OFF.

Maintenance can be performed quickly and safely.

*1: The maximum SCCR should be 500 mA. A PU connector cannot be used during USB bus power connection.

E800

No power supply

3 Easy and fast wiring

Spring clamp terminals

Spring clamp terminals have been adopted for control circuit terminals for easy wiring.
 Furthermore, wires can be protected against loosening or contact faults due to vibrations during operation on a bogie or during transport. No additional screw tightening is required.

		FR-E800	FR-E800-E	FR-E800-SCE
Input termir	nal	7	2	0
Output	Open collector	2	0	0
terminal	Relay	1	1	1

4 Troubleshooting supported by AI technology E800 E800-E	E800-SCE
Al fault diagnosis	
The inverter is connected to the engineering software, FR Configurator2, in which Maisart*1 (Mitsubishi Electric's Al technology) is integrated to analyze data and help identify the cause of a fault. This function enables the fastest troubleshooting procedure without requiring any special skills, which contributes to downtime reduction.	Maisart
*1: Maisart is Mitsubishi Electric's brand of Al technology. The name stands for "Mitsubishi Electric's Al creates the State-of-the-ART in technology". This means that it is using our proprietary Al technology to make everything smarter.	
in continuogy - The mound that it is doing out propriotally in too mology to make overything officiate.	
Fault occurs Fault diagnosis Fault cause	
Input: parameters, waveform data	
Al fault diagnosis result screen	
Example: E.OC1 (Overcurrent trip during acceleration) The screen is under development.	

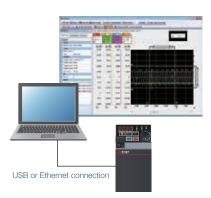
5 Trouble analysis from a remote location

Trace function

The operating status (output frequency or other data) immediately before the protective function is activated can be stored in a data file.

Users can read the data file in FR Configurator2 for graph display or send it by e-mail to someone away from the worksite, which facilitates the trouble analysis.

Clock function


Setting the time*1 enables the user to specify the protective function activation time.

The date and time are also saved with the trace data, making the fault analysis easier.

Time synchronization via CC-Link IE TSN communication is available for the Ethernet model.

The internal clocks of connected devices on the CC-Link IE TSN Network can be synchronized.

*1: The clock is reset at power-OFF.

E800-E

E800-SCE

E800

Maintenance

Engineering tools

Engineering software for further ease of operation

The work efficiency can be improved for each of the design, operation, and maintenance processes.

FR Configurator2 for further ease of operation

Using FR Configurator2, easy-to-use software assisting anything from setup to maintenance, much more useful functions are available for users.

Free trial version Functions

E800

The function with the marking above is available in the free trial version (usable free of charge with limited functions). It can be

E800-E

downloaded at Mitsubishi Electric FA Global Website.						
Function	Free trial version		Function	Free trial version		
Parameter list	0		Developer	×		
Diagnosis	0		USB memory	×		
Al fault diagnosis	×		parameter copy file edit			
Graph	×		Ethernet parameter setting	0		
Batch monitor	×		iQSS backup file conversion	0		
Test operation	0		Help	0		
I/O terminal monitor × O: Supported						
A full functional trial version, which has the same functionality as X: Not supported						

the release version, is also offered for a limited period of 20 days

E800-SCE

2.23

Life diagnosis check Free trial version Functions

Parts service life data is displayed in a dedicated window. A warning icon is shown in the alarm field of the parts recommended for replacement.

This can be used as a guideline to replace long life parts.

Graph function—Automatic sampling when a fault occurs

Waveform graph data immediately before the protective function is activated can be automatically obtained.

Graph display and log analysis are available using the stored trace data.

Ethernet parameter setting Free trial version Functions

Inverters in the same subnet mask are automatically detected, supporting easy network setting.

1) Detect supported devices.

2) Enter the network No., station No.,

Diagnostics (Fault history)

Fault records in the inverter can be displayed. When the clock function or CC-Link IE TSN communication is used, the time of fault occurrence can be displayed, too. It is possible to check the occurrence time and the type of faults, which is helpful in identifying causes of faults.

2 Further facilitating operation with your smartphone E800 E800-E E800-SCE Setup information web page Users can scan the QR code on the product to directly access the setup information. Manuals, setup videos, and outline dimension drawings are available. Mobile app To be supported soon E800 E800-E E800-SCE Wireless access with inverters from a remote location enables setting or changing of parameters, starting and stopping, and

monitoring on the screen of mobile devices. Users can easily monitor the inverter operation by checking data such as the running frequency and status of input and

output terminals at a glance in one screen. Wireless communication equipment must be prepared in the system that includes the inverter.

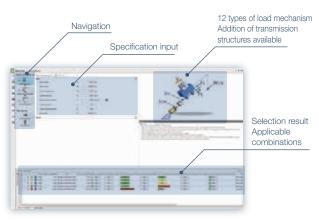
> Operating status Check the Recognize Set Parameters Monitor FR-A820-E1-0.4K(00013) - 19. inverters fault history 63 a, ø 10.0022-0.00 PRAKES IT & 0 ۰ 4 . 4 10 ٩. 4 -122 30.00 - Des --------2

Engineering tool

Engineering tools

Engineering software for further ease of operation

The work efficiency can be improved for each of the design, operation, and maintenance processes.


S Further facilitating operation with the capacity selection software To be supported soon

Users can select motors by entering data of mechanical configuration, specifications, and operating patterns. Applicable combinations include inverters, sersorless servo drive units, and AC servo amplifiers.

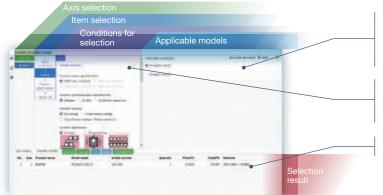
The most suitable combination can be selected from the selection result. The software also supports multi-axis systems.

Twelve types of load mechanism such as a ball screw or a rack and pinion are selectable.

Selection is available by following the steps from 1 to 3. When users include the power regeneration common converter or other applicable converter, the capacity of the converter can be selected at the same time.

E800

E800


E800-E

E800-SCE

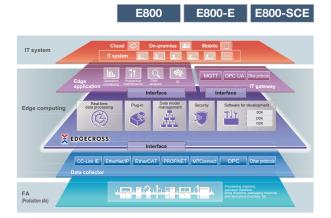
E800-SCE

4 Further facilitating operation with the selection guide software To be supported soon

Advanced search for optimum inverters is available. Users can select inverters by entering data such as the motor capacity and current value and specifying specifications. The time spent on inverter selection can be reduced.

Applicable models will change in real time according to changes made to entries. Users do not have to fill all fields for selection. Applicable models will be selected according to the data entered.

E800-E


Users can select the items to enter to set conditions for selection by folding or unfolding windows. Both easy setting and detailed setting are available.

Users can select one of the applicable models to register it as the selection result.

• Further facilitating operation with Edgecross

Inverters and the system are integrated by maximizing the use of production data with edge computing, enabling solutions for various issues including productivity improvement and equipment maintenance.

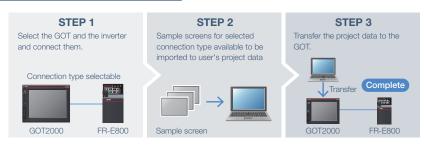
- Integration and processing of data sent from various devices and systems in production lines
- Real-time feedback to production sites
- Monitoring of field devices based on the know-how of production sites

6 Further facilitating operation with GOT interaction functions To be supported soon

Enhanced compatibility between inverters and the GOT (human machine interface) brings various benefits to users.

Connection with the GOT2000 series can be established just by setting the station number. Other necessary settings are automatically done.

Less time spent on screen design work by importing sample screens


Various sample screens*1 are available to enable parameter setting, batch monitor, measurement of load characteristics and so on using the GOT.

Using sample screens enables easy startup of the system.

*1: Sample screens are included in the GT Works3 (Ver. 1.205P or later) package, or can be downloaded at Mitsubishi Electric FA Global Website.

Improving work efficiency without using a computer

Users can use the GOT to set up, adjust, and perform maintenance for inverters without using a computer.

E800

E800-E E800-SCE

GOT Drive

Before Do I have to go to the control panel just to check something trivial? 副前 C.

Ġ Users do not want to go to the control panel or use a computer to check the operation.

1 Instead on the control panel, users can check data on a GOT. 2 Multiple inverters can monitored using the target station switching function.

Immediate warning of system errors


By storing the data of relationship between the output frequency and the torque during normal inverter operation, users can judge whether the load is operating in normal condition. By outputting out-of-range warnings if applicable, users can detect mechanical faults or perform maintenance.

Reducing downtime by interacting with the GOT

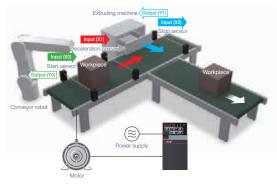
Faults occurred in the inverter can be displayed on the GOT screen. When a fault occurs, it is possible to identify the cause immediately, which contributes to downtime reduction.

the inverter to facilitate maintenance.

2 Operation of the system can be monitored constantly.

Application examples

Transfer system



Is it possible to simplify the electric control system to use a smaller enclosure?

Inverter operations can be freely customized using the PLC function in the inverter. This function enables construction of various systems without using programmable controllers.

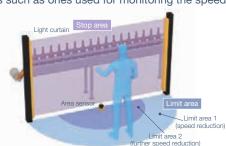
PLC function

In accordance with the machine specifications, users can set various operation patterns: inverter movements at signal inputs, signal outputs at particular inverter statuses, and monitor outputs, etc. Operation of the system can be customized by the inverter alone.

CASE 4

Food processing line

Problem Solution


Is it possible to increase productivity while ensuring the safety of operators?

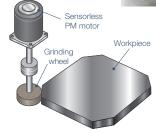
The inverter supports the IEC 61508-5-2 functional safety standard. This will significantly reduce time required for maintenance or tooling and eliminate external devices such as ones used for monitoring the speed.

SLS (safely-limited speed) function

It is possible to continue operation at a safe speed without stopping the production line. The motor speed is calculated based on the current value or other data without using an encoder. This will contribute to wire and cost savings.

CASE 5 **Cutting machine**

Is it possible to reduce variation in the finished products?


Using PM sensorless vector control, the inverter contributes to reducing variation caused by uneven rotation.

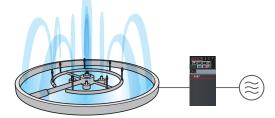
PM sensorless vector control

The speed and magnetic pole positions, the two essential bits of information to control a PM motor, are detected without a sensor (encoder). The speed detection internally-performed in an inverter enables highly accurate control of a PM motor, almost as accurate as an AC servo system, without the need of a sensor (encoder). Speed fluctuation ratio: ±0.05% (digital input)

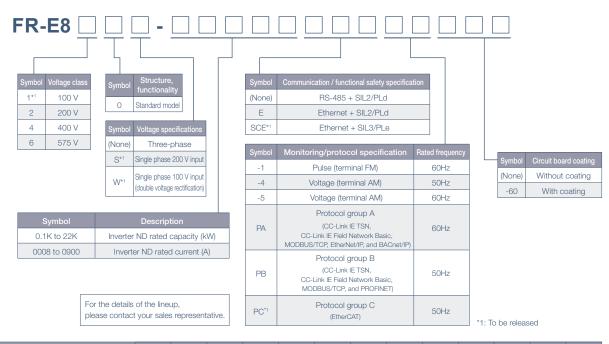
Speed fluctuation ratio = (Speed under no load – Speed under rated load)/Rated speed × 100(%)

Sprinkler

CASE 6


Is it possible to reduce the amount of water except for daytime hours?

The inverter has the PLC function to change its operation according to the weather or time of day.



PLC function

The inverter can be run in accordance with a sequence program. Inverter control such as inverter operations triggered by input signals, signal output based on inverter operation status, and monitor output can be freely customized based on the machine specifications.

Lineup

Three-phase 200 V	0.1K	0.2K	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K		18.5K	22K
Three-phase 200 V	8000				0080	0110	0175	0240	0330	0470	0600	0760	0900
FR-E820-[](E)										0	0	0	0
FR-E820-[]SCE	0	0	0	0	0	0	0	0	0	0	0	0	0
Three-phase 400 V			0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K
Thee-phase 400 V				0026	0040	0060	0095	0120	0170	0230	0300	0380	0440
FR-E840-[](E)	—	—								0	0	0	0
FR-E840-[]SCE	—	—	0	0	0	0	0	0	0	0	0	0	0
Three-phase 575 V				0.75K	1.5K	2.2K	3.7K	5.5K	7.5K				
Thee-phase or o v				0017	0027	0040	0061	0090	0120				-
FR-E860-[](E)	—	—	—							—	—	—	—
FR-E860-[]SCE	—	—	—	0	0	0	0	0	0	—	—	—	—
Single-phase 200 V	0.1K	0.2K	0.4K	0.75K	1.5K	2.2K							
Single-phase 200 V	8000				0080	0110							
FR-E820S-[](E/SCE)	0	0	0	0	0	0	—	—	—	—	—	—	—
Single-phase 100 V	0.1K	0.2K	0.4K	0.75K									
Single-phase 100 v													
FR-E810W-[](E/SCE)	0	0	0	0	—	_	_	_	_	_	_	_	_

● : Released, ○: To be released, -: Not applicable

List of invortors by rating

List of inverters by rating								
200 V class	200 V class							
Model Fl	R-E820-[]	Applicable motor capacity (kW)*1						
		LD	ND					
0.1K	0008	0.2	0.1					
0.2K	0015	0.4	0.2					
0.4K	0030	0.75	0.4					
0.75K	0050	1.1	0.75					
1.5K	0080	2.2	1.5					
2.2K	0110	3	2.2					
3.7K	0175	5.5	3.7					
5.5K	0240	7.5	5.5					
7.5K	0330	11	7.5					

400 V class

Model FR-E840-[]		Applicable motor capacity (kW)*1		
		LD	ND	
0.4K	0016	0.75	0.4	
0.75K	0026	1.5	0.75	
1.5K	0040	2.2	1.5	
2.2K	0060	3	2.2	
3.7K	0095	5.5	3.7	
5.5K	0120	7.5	5.5	
7.5K	0170	11	7.5	

575 V class

120% 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C

150% 60 s, 200% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C

Model FR-E860-[]		Applicable motor capacity (kW)			
			ND		
0.75K	0017	1.5	0.75		
1.5K	0027	2.2	1.5		
2.2K	0040	3.7	2.2		
3.7K	0061	5.5	3.7		
5.5K	0090	7.5	5.5		
7.5K	0120	11	7.5		

*1: The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor.

LD

ND

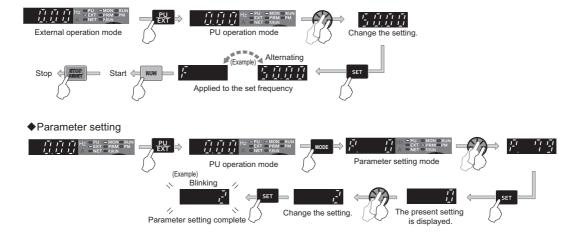
ΜΕΜΟ

Basic Operation E800

RUN

PU EX1

AS-

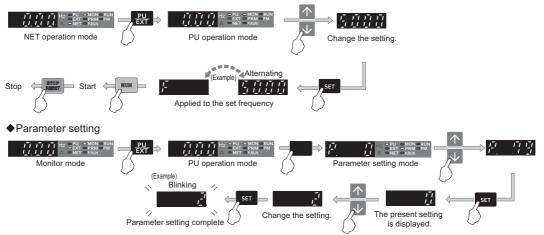

Components of the operation panel

А

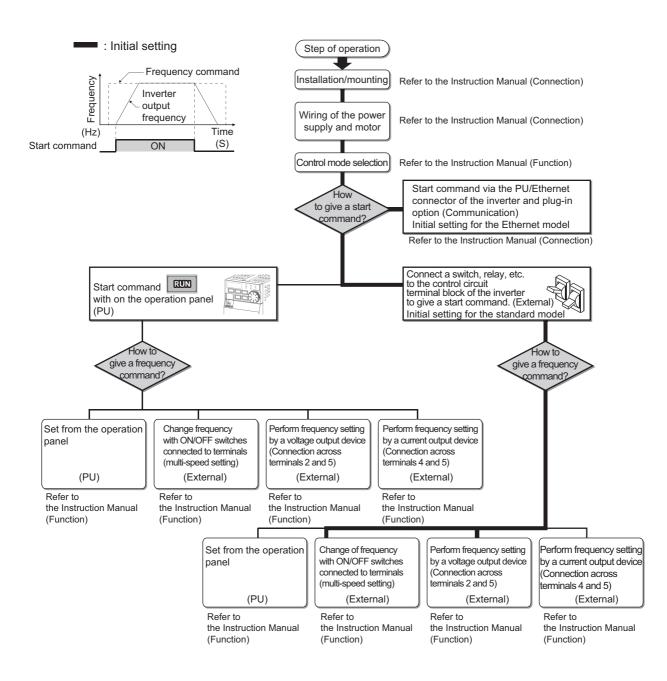
The operation panel cannot be removed from the inverter.

	Name	Description
	PU/EXT key	Switches between the PU operation mode, the PUJOG operation mode, and the External operation mode.
	MODE key	Switches the operation panel to a different mode.
	SET key	Used to confirm each selection. Switches the monitor screen in the monitor mode.
'A	RUN key	Start command The direction of motor rotation depends on the Pr.40 setting.
	STOP/RESET key	Used to stop operation commands. Used to reset the inverter when the protective function is activated.
	Setting dial	The setting dial of the Mitsubishi Electric inverters. Turn the setting dial to change the setting of frequency or parameter.

◆Starting/stopping the inverter on the operation panel
--


Basic Operation E800-E

• Components of the operation panel


The operation panel cannot be removed from the inverter.

	Name	Description
	PU/EXT key	Switches between the PU operation mode, the PUJOG operation mode, and the External operation mode.
	MODE key	Switches the operation panel to a different mode.
Hz PU MON RUN Hz EXT PRM PM A NET BRUN	SET key	Used to confirm each selection. Switches the monitor screen in the monitor mode.
PU EXT MODE SET (NS MS	RUN key	Start command The direction of motor rotation depends on the Pr.40 setting.
	STOP/RESET key	Used to stop operation commands. Used to reset the inverter when the protective function is activated.
	UP/DOWN key (↑ ↓)	Press this key to change the setting of frequency or parameter.

Starting/stopping the inverter on the operation panel

Operation Steps

Parameter list

For simple variable-speed operation of the inverter, the initial values of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter's setting, change and check can be made on the operation panel.

- (Simple) indicates simple mode parameters. Use Pr.160 User group read selection to indicate the simple mode parameters only (initial setting is to indicate the extended mode parameters).
- The changing of the parameter settings may be restricted in some operating statuses. Use Pr.77 Parameter write selection to change the setting of the restriction.
- Refer to for instruction codes for communication and availability of Parameter clear, all clear, and Parameter copy.

Notation

- [E800]: Available for the standard model.
- [E800-1]: Available for the FM type inverter (standard model).
- [E800-4]: Available for the AM (50 Hz) type inverter (standard model).
- [E800-5]: Available for the AM (60 Hz) type inverter (standard model).
- [E800-E]: Available for the Ethernet model. [E800-EPA]: Available for the Protocol group A (Ethernet model).
- [E800-EPB]: Available for the Protocol group B (Ethernet model).
- [200/400 V class]: Available for the 200/400 V class.
- [575 V class]: Available for the 575 V class inverters.

2

Function	Pr.	Pr. group	Name	Setting range	Minimum setting	Initial Gr.1	value*1 Gr.2	Customer setting
	0	G000	Torque boost(<u>Simple</u>)	0% to 30%	increments 0.1%	6%*2 5%*2 4%*2 3%*2 2%*2		
	1	H400	Maximum frequency Simple	0 to 120 Hz	0.01 Hz	120 Hz		
	2	H401	Minimum frequency Simple	0 to 120 Hz	0.01 Hz	0 Hz		
E	3	G001	Base frequency Simple	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
Basic function	4	D301	Multi-speed setting (high speed) Simple	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
Basic 1	5	D302	Multi-speed setting (middle speed)(<i>Simple</i>)	0 to 590 Hz	0.01 Hz	30 Hz		
	6	D303	Multi-speed setting (low speed)(Simple)	0 to 590 Hz		10 Hz		
	7 F010 Acce	Acceleration time	0 to 3600 s	0.1 s	5 s*3 10 s			
	8	F011	Deceleration time Simple	0 to 3600 s	0.1 s	5 s*3 10 s		
	9	H000 C103	Electronic thermal O/L relay(<i>Simple</i>) Rated motor current(<i>Simple</i>)	0 to 500 A	0.01 A	Inverter rated current		
L.	10	G100	DC injection brake operation frequency	0 to 120 Hz	0.01 Hz	3 Hz		
ectic ke	11	G101	DC injection brake operation time	0 to 10 s, 9999	0.1 s	0.5 s		
DC injection brake	12	G110	DC injection brake operation voltage	0% to 30%	0.1%	6%*4 4%*4 1%*4		
_	13	F102	Starting frequency	0 to 60 Hz	0.01 Hz	0.5 Hz		1
_	14	G003	Load pattern selection	0 to 3	1	0		
u	15	D200	Jog frequency	0 to 590 Hz	0.01 Hz	5 Hz		
JOG operation	16	F002	Jog acceleration/deceleration time	0 to 3600 s	0.1 s	0.5 s		
_	17	T720	MRS/X10 terminal input selection	0 to 5	1	0		
—	18	H402	High speed maximum frequency	0 to 590 Hz	0.01 Hz	120 Hz		
_	19	G002	Base frequency voltage	0 to 1000 V, 8888, 9999	0.1 V	9999	8888	
on/ time	20	F000	Acceleration/deceleration reference frequency	1 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
Acceleration/ deceleration time	21	F001	Acceleration/deceleration time increments	0, 1	1	0		

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value*1 Gr.1 Gr.2	Customer setting
all ntion	22	H500	Stall prevention operation level (Torque limit level)	0% to 400%	0.1%	150%	
Stall prevention	23	H610	Stall prevention operation level compensation factor at double speed	0% to 200%, 9999	0.1%	9999	
Multi-speed setting	24 to 27	D304 to D307	Multi-speed setting (speed 4 to speed 7)	0 to 590 Hz, 9999	0.01 Hz	9999	
_	29	F100	Acceleration/deceleration pattern selection	0 to 2	1	0	
_	30	E300	Regenerative function selection	0 to 2	1	0	
	31	H420	Frequency jump 1A	0 to 590 Hz, 9999	0.01 Hz	9999	
5	32	H421	Frequency jump 1B	0 to 590 Hz, 9999	0.01 Hz	9999	
Frequency jump	33	H422	Frequency jump 2A	0 to 590 Hz, 9999	0.01 Hz	9999	
equ	34	H423	Frequency jump 2B	0 to 590 Hz, 9999	0.01 Hz	9999	
ι, μ	35	H424	Frequency jump 3A	0 to 590 Hz, 9999	0.01 Hz	9999	
	36	H425	Frequency jump 3B	0 to 590 Hz, 9999	0.01 Hz	9999	
_	37	M000	Speed display	0.01 to 9998	0.001	1800	
_	40	E202	RUN key rotation direction selection	0, 1	1	0	
uc	41	M441	Up-to-frequency sensitivity	0% to 100%	0.1%	10%	
octic	42	M442	Output frequency detection	0 to 590 Hz	0.01 Hz	6 Hz	
Frequency detection	43	M443	Output frequency detection for reverse rotation	0 to 590 Hz, 9999	0.01 Hz	9999	
	44	F020	Second acceleration/deceleration time	0 to 3600 s	0.1 s	5 s*3 10 s*3	
tio	45	F021	Second deceleration time	0 to 3600 s, 9999	0.1 s	9999	
un	46	G010	Second torque boost	0% to 30%, 9999	0.1%	9999	
1 d f	47	G011	Second V/F (base frequency)	0 to 590 Hz, 9999	0.01 Hz	9999	
Second function	48	H600	Second stall prevention operation level	0% to 400%, 9999	0.1%	9999	
	51	H010 C203	Second electronic thermal O/L relay Rated second motor current	0 to 500 A, 9999	0.01 A	9999	
ßu	52	M100	Operation panel main monitor selection	[E800][E800-EPB] 0, 5 to 12, 14, 17, 18, 20, 23 to 25, 32, 33, 38, 40 to 42, 44, 45, 50 to 57, 61, 62, 67, 91, 97, 100 [E800-EPA] 0, 5 to 12, 14, 17, 18, 20, 23 to 25, 32, 33, 38, 40 to 42, 44, 45, 50 to 57, 61, 62, 67, 83, 91, 97, 100	1	0	
Monitori	53	M003	Frequency / rotation speed unit switchover	0, 1, 4	1	0	
	54	M300	FM terminal function selection [E800- 1]	1 to 3, 5 to 12, 14, 17, 18, 21, 24, 32, 33, 50, 52, 53, 61, 62, 67, 70, 97	1	1	
	55*5	M040	Frequency monitoring reference	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
	56*5	M041	Current monitoring reference	0 to 500 A	0.01 A	Inverter rated current	
atic T	57	A702	Restart coasting time	0, 0.1 to 30 s, 9999	0.1 s	9999	
Automatic restart	58	A703	Restart cushion time	0 to 60 s	0.1 s	1 s	
	59	F101	Remote function selection	0 to 3, 11 to 13	1	0	
	60	G030	Energy saving control selection	0, 9	1	0	
ion	61	F510	Reference current	0 to 500 A, 9999	0.01 A	9999	
tomatic n/deceler	62 63	F511 F512	Reference value at acceleration	0% to 400%, 9999 0% to 400%, 9999	<u>1%</u> 1%	9999	
	65	H300	Retry selection	0 to 5	1	0	
	66	H611	Stall prevention operation reduction starting frequency	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value*1 Gr.1 Gr.2	Customer setting
~	67	H301	Number of retries at fault occurrence	0 to 10, 101 to 110	1	0	
Retry	68	H302	Retry waiting time	0.1 to 600 s	0.1 s	1 s	
œ	69	H303	Retry count display erase	0	1	0	
_	70	G107	Special regenerative brake duty	0% to 100%	0.1%	0%	
_	71	C100	Applied motor	[200 V class / 400 V class] 0, 3, 5, 6, 10, 13, 15, 16, 20, 23, 40, 43, 50, 53, 70, 73, 8090, 8093, 9090, 9093 [575 V class] 0, 3, 5, 6, 10, 13, 15, 16, 8090, 8093, 9090, 9093	1	0	
_	72	E600	PWM frequency selection	0 to 15	1	1	
—	73	Т000	Analog input selection	0, 1, 6, 10, 11, 16	1	1	
_	74	T002	Input filter time constant	0 to 8	1	1	
			Reset selection/disconnected PU detection/PU stop selection	0 to 3, 14 to 17		14	
_	75	E100	Reset selection		1	0	
		E101	Disconnected PU detection	0, 1		°	
		E102	PU stop selection			1	
—	77	E400	Parameter write selection	0 to 2	1	0	
_	78	D020	Reverse rotation prevention selection	0 to 2	1	0	
_	79	D000	Operation mode selection Simple	0 to 4, 6, 7	1	0	
	80	C101	Motor capacity	0.1 to 30 kW, 9999	0.01 kW	9999	
	81	C102	Number of motor poles	2, 4, 6, 8, 10, 12, 9999	1	9999	
	82	C125	Motor excitation current	0 to 500 A, 9999	0.01 A	9999	
	83	C104	Rated motor voltage	0 to 1000 V	0.1 V	[200 V class] 200 V [400 V class] 400 V [575 V class] 575 V	
star	84	C105	Rated motor frequency	10 to 400 Hz, 9999	0.01 Hz	9999	
Motor constant	89	G932	Speed control gain (Advanced magnetic flux vector)	0% to 200%, 9999	0.1%	9999	
oto	90	C120	Motor constant (R1)	0 to 50 Ω, 9999	0.001Ω	9999	
Σ	91	C121	Motor constant (R2)	0 to 50 Ω, 9999	0.001Ω	9999	
	92	C122	Motor constant (L1)/d-axis inductance (Ld)	0 to 6000 mH, 9999	0.1 mH	9999	
	93	C123	Motor constant (L2)/q-axis inductance (Lq)	0 to 6000 mH, 9999	0.1 mH	9999	
	94	C124	Motor constant (X)	0% to 100%, 9999	0.1%	9999	
	95	C111	Online auto tuning selection	0, 1	1	0	
	96	C110		0, 1, 11	1	0	
	117	N020	PU communication station number	0 to 31	1	0	
tion	118	N021		48, 96, 192, 384, 576, 768, 1152	1	192	
unica	119		dala lengin	0, 1, 10, 11	1	1	
ů.	113	N022	PU communication data length	0, 1		0	ļ
cor		N023		0, 1		1	
tor	120	N024	PU communication parity check	0 to 2	1	2	
nec	121	N025	PU communication retry count	0 to 10, 9999	1	1	
PU connector communication	122	N026	Interval	0, 0.1 to 999.8 s, 9999	0.1 s	0	
Ъ	123	N027	PU communication waiting time setting	0 to 150 ms, 9999	1 ms	9999	
	124	N028	PU communication CR/LF selection	0 to 2	1	1	
_	125	Т022	Terminal 2 frequency setting gain frequency Simple	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
_	126	T042	Terminal 4 frequency setting gain frequency <u>Simple</u>	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value*1 Gr.1 Gr.2	Customer setting			
	127	A612	PID control automatic switchover frequency	0 to 590 Hz, 9999	0.01 Hz	9999				
PID operation	128	A610	PID action selection	0, 20, 21, 40 to 43, 50, 51, 60, 61, 1000, 1001, 1010, 1011, 2000, 2001, 2010, 2011	1	0				
Dera	129	A613	PID proportional band	0.1% to 1000%, 9999	0.1%	100%				
	130	A614	PID integral time	0.1 to 3600 s, 9999	0.1 s	1 s				
ЫЧ	131	A601	PID upper limit	0% to 100%, 9999	0.1%	9999				
	132	A602	PID lower limit	0% to 100%, 9999	0.1%	9999				
	133	A611	PID action set point	0% to 100%, 9999	0.01%	9999				
	134	A615	PID differential time	0.01 to 10 s, 9999	0.01 s	9999				
_	145	E103	Parameter for manufacturer setting. D	o not set.						
_	147	F022	Acceleration/deceleration time switching frequency	0 to 590 Hz, 9999	0.01 Hz	9999				
_	150	M460	Output current detection level	0% to 400%	0.1%	150%				
Current	151	M461	Output current detection signal delay time	0 to 10 s	0.1 s	0 s				
dete	152	M462	Zero current detection level	0% to 400%	0.1%	5%				
Ŭ	153	M463	Zero current detection time	0 to 10 s	0.01 s	0.5 s				
_	154	H631	Voltage reduction selection during stall prevention operation	1, 11	1	1				
_	156	H501	Stall prevention operation selection	0 to 31, 100, 101	1	0				
_	157	M430	OL signal output timer	0 to 25 s, 9999	0.1 s	0 s				
-	158	M301	AM terminal function selection [E800- 4][E800-5]	1 to 3, 5 to 12, 14, 17, 18, 21, 24, 32, 33, 50, 52 to 54, 61, 62, 67, 70, 91, 97	1	1				
	160	E440	User group read selection Simple	0, 1, 9999	1	0				
_	161	E200	Frequency setting/key lock operation selection	0, 1, 10, 11	1	0				
natic tart	162	A700	Automatic restart after instantaneous power failure selection	0, 1, 10, 11	1	0				
Automatic restart	165	A710	Stall prevention operation level for restart	0% to 400%	0.1%	150%				
Current detection	166	M433	Output current detection signal retention time	0 to 10 s, 9999	0.1 s	0.1 s				
Cur dete	167	M464	Output current detection operation selection	0, 1, 10, 11	1	0				
_	168	E000								
		E080	Parameter for manufacturer setting D	o not set.						
-	169	E001 E081	·	Parameter for manufacturer setting. Do not set.						
۹.	170	M020	Watt-hour meter clear	0, 10, 9999	1	9999				
Cumulative monitor	171	M030	Operation hour meter clear	0, 9999	1	9999				
User group	172	E441	User group registered display/batch clear	9999, (0 to 16)	1	0				
Us gro	173	E442	User group registration	0 to 1999, 9999	1	9999				
	174	E443	User group clear	0 to 1999, 9999	1	9999				

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value*1 Gr.1 Gr.2	Customer setting
	178	Т700	STF/DI0 terminal function selection	0 to 5, 7, 8, 10, 12, 14 to 16, 18, 24 to 27, 30, 37, 46, 47, 50, 51, 60, 62, 65 to 67, 72, 92, 9999	1	60	
ignment	179	T701	STR/DI1 terminal function selection	0 to 5, 7, 8, 10, 12, 14 to 16, 18, 24 to 27, 30, 37, 46, 47, 50, 51, 61, 62, 65 to 67, 72, 92, 9999	1	61	
	180	T702	RL terminal function selection		1	0	
n as:	181	T703	RM terminal function selection	[E800] 0 to 5, 7, 8, 10, 12, 14 to	1	1	
nctio	182	T704	RH terminal function selection	16, 18, 24 to 27, 30, 37, 46, 47, 50, 51, 62, 65 to	1	2	
al fur	183	T709	MRS terminal function selection	67, 72, 92, 9999 [E800-E]	1	24	
Input terminal function assignment	184	T711	RES terminal function selection	0 to 4, 8, 14, 15, 18, 24, 26, 27, 30, 37, 46, 47, 50, 51, 72, 92, 9999	1	[E800] 62 [E800-E] 9999	
Ē	185	T751	NET X1 input selection		1		
	186	T752	NET X2 input selection	0 to 4, 8, 14, 15, 18, 24,	1	-	
	187	T753	NET X3 input selection	26, 27, 30, 37, 46, 47, 50, 51, 72, 92, 9999	1	9999	
	188	T754	NET X4 input selection		1		
	189	T755	NET X5 input selection		1		
	190	M400	RUN terminal function selection	0, 1, 3, 4, 7, 8, 11 to 16, 20, 25, 26, 34, 35, 39 to 41, 44 to 48, 57, 64, 70, 80, 81, 90 to 93, 95, 96, 98, 99, 100, 101, 103, 104, 107, 108, 111 to 116, 120, 125, 126, 134, 135.	1	0	
ŧ	191	M404	FU terminal function selection	139 to 141, 144 to 148, 157, 164, 170, 180, 181, 190 to 193, 195, 196, 198, 199, 206, 211 to 213, 242 [E800-E], 306, 311 to 313, 342 [E800-E]	1	4	
Output terminal function assignment	192	M405	ABC terminal function selection	0, 1, 3, 4, 7, 8, 11 to 16, 20, 25, 26, 34, 35, 39, 40, 41, 44 to 48, 57, 64, 70, 80, 81, 82 [E800-EPA], 90, 91, 95, 96, 98, 99, 100, 101, 103, 104, 107, 108, 111 to 116, 120, 125, 126, 134, 135, 139, 140, 141, 144 to 148, 157, 164, 170, 180, 181, 182 [E800-EPA], 190, 191, 195, 196, 198, 199, 206, 211 to 213, 242 [E800-E], 306, 311 to 313, 342 [E800-E]	1	99	
0	193	M451	NET Y1 output selection	0, 1, 3, 4, 7, 8, 11 to 16, 20, 25, 26, 34, 35, 39 to 41, 44 to 48, 57, 64, 70,	1	9999	
	194	M452	NET Y2 output selection	80, 81, 90 to 93, 95, 98, 99, 100, 101, 103, 104, 107, 108, 111 to 116, 120, 125, 126, 134, 135, 139	1	9999	
	195	M453	NET Y3 output selection	to 141, 144 to 148, 157, 164, 170, 180, 181, 190 to 193, 195, 198, 199,	1	9999	
	196	M454	NET Y4 output selection	206, 211 to 213, 242 [E800-E], 306, 311 to 313, 342 [E800-E]	1	9999	
—	198	E709	Display corrosion level	(1 to 3)	1	1	
Multi-speed setting	232 to 239	D308 to D315	15)	0 to 590 Hz, 9999	0.01 Hz	9999	
_	240	E601	Soft-PWM operation selection	0, 1	1	1	
_	241	M043	Analog input display unit switchover	0, 1	1	0	
—	244	H100	Cooling fan operation selection	0, 1	1	1	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value*1 Gr.1 Gr.2	Customer setting
uo	245	G203	Rated slip	0% to 50%, 9999	0.01%	9999	
sati	246	G204	Slip compensation time constant	0.01 to 10 s	0.01 s	0.5 s	
Slip compensation	247	G205	Constant output range slip compensation selection	0, 9999	1	9999	
_	249	H101	Earth (ground) fault detection at start	0, 1	1	0 1	
_	250	G106	Stop selection	0 to 100 s, 1000 to 1100 s, 8888, 9999	0.1 s	9999	
-	251	H200	Output phase loss protection selection	0, 1	1	1	
<u> </u>	255	E700	Life alarm status display	(0 to 879)	1	0	
eck	256	E701	Inrush current limit circuit life display	(0% to 100%)	1%	100%	
Life check	257	E702	Control circuit capacitor life display	(0% to 100%)	1%	100%	
-ife	258	E703	Main circuit capacitor life display	(0% to 100%)	1%	100%	
-	259	E704	Main circuit capacitor life measuring	0, 1	1	0	
_	260	E602	PWM frequency automatic switchover	0, 10	1	10	
Power failure stop	261	A730	Power failure stop selection	0 to 2	1	0	
	267	T001	Terminal 4 input selection	0 to 2	1	0	
	268	M022	Monitor decimal digits selection	0, 1, 9999	1	9999	
_	269	E023	Parameter for manufacturer setting. D	o not set.			
t	270	A200	Stop-on-contact control selection	0, 1, 11	1	0	
Stop-on-contact control	275	A205	Stop-on contact excitation current low- speed scaling factor	0% to 300%, 9999	0.1%	9999	
p-on-cor control	276	A206	PWM carrier frequency at stop-on contact	0 to 9, 9999	1	9999	
Sto	277	H630	Stall prevention operation current switchover	0, 1	1	0	
e	278	A100	Brake opening frequency	0 to 30 Hz	0.01 Hz	3 Hz	
Brake sequence	279	A101	Brake opening current	0% to 400%	0.1%	130%	
nbe	280	A102	Brake opening current detection time	0 to 2 s	0.1 s	0.3 s	
e v	281	A103	Brake operation time at start	0 to 5 s	0.1 s	0.3 s	
rak	282	A104	Brake operation frequency	0 to 30 Hz	0.01 Hz	6 Hz	
8	283	A105	Brake operation time at stop	0 to 5 s	0.1 s	0.3 s	
_	285	H416	Speed deviation excess detection frequency	0 to 30 Hz, 9999	0.01 Hz	9999	
tro p	286	G400	Droop gain	0% to 100%	0.1%	0%	
Droop control	287	G401	Droop filter time constant	0 to 1 s	0.01 s	0.3 s	
	289	M431	Inverter output terminal filter	5 to 50 ms, 9999	1 ms	9999	
	290	M044	Monitor negative output selection	0, 1, 4, 5, 8, 9, 12, 13	1	0	
-	292	A110 F500	Automatic acceleration/deceleration	0, 1, 7, 8, 11	1	0	
-	293	F513	Acceleration/deceleration separate selection	0 to 2	1	0	
_	295	E201	Frequency change increment amount setting	0, 0.01, 0.1, 1, 10,	0.01	0	
Password	296	E410	Password lock level	0 to 6, 99, 100 to 106, 199, 9999	1	9999	
Pass	297	E411	Password lock/unlock	(0 to 5), 1000 to 9998, 9999	1	9999	
_	298	A711	Frequency search gain	0 to 32767, 9999	1	9999	
_	299	A701	Rotation direction detection selection at restarting	0, 1, 9999	1	0	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value*1 Gr.1 Gr.2	Customer setting
	313*6	M410	DO0 output selection		1	9999	
	314*6	M411	DO1 output selection	0, 1, 3, 4, 7, 8, 11 to 16, 20, 25, 26, 34, 35, 39 to 41, 44 to 48, 57, 64, 70,	1	9999	
	315*6	M412	DO2 output selection	80, 81, 90 to 93, 95, 96, 98, 99, 100, 101, 103,	1	9999	
	316*6	M413	DO3 output selection	104, 107, 108, 111 to 116, 120, 125, 126, 134, 135, 139 to 141, 144 to 148,	1	9999	
nk IE	317*6	M414	DO4 output selection	157, 164, 170, 180, 181, 190 to 193, 195, 196, 198, 199, 206, 211 to	1	9999	
CC-Link IE	318*6	M415	DO5 output selection	213, 242 [E800-E], 306, 311 to 313, 342 [E800-E], 9999	1	9999	
	319*6	M416	DO6 output selection		1	9999	
	320*6	M420	RA1 output selection	0, 1, 3, 4, 7, 8, 11 to 16, 20, 25, 26, 34, 35, 39 to	1	0	
	321*6	M421	RA2 output selection	41, 44 to 48, 57, 64, 70, 80, 81, 90, 91, 95, 96, 98,	1	1	
	322*6	M422	RA3 output selection	99, 206, 211 to 213, 242 [E800-E], 9999	1	4	
uo	338	D010	Communication operation command source	0, 1	1	0	
nicati	339	D011	Communication speed command source	0 to 2	1	0	
RS-485 communication	340	D001	Communication startup mode selection	0, 1, 10	1	[E800] 0 [E800-E] 10	
RS-48	342	N001	Communication EEPROM write selection	0, 1	1	0	
4	343	N080	Communication error count	(0 to 999)	1	0	
—	349*7	N010	Communication reset selection	0, 1	1	0	
—	374	H800	Overspeed detection level	0 to 590 Hz, 9999	0.01 Hz	9999	
—	390	N054	% setting reference frequency	1 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
C	414	A800	PLC function operation selection	0 to 2, 11, 12	1	0	
РГС	415	A801	Inverter operation lock mode setting	0, 1	1	0	
L.	442	N620	Default gateway address 1 [E800-E]				
jue.	443	N621	Default gateway address 2 [E800-E]				
Ethernet	444	N622	Default gateway address 3 [E800-E]	0 to 255	1	0	
Ξ	445	N623	Default gateway address 4 [E800-E]				
	450	C200	Second applied motor	[200 V class / 400 V class] 0, 3, 5, 6, 10, 13, 15, 16, 20, 23, 40, 43, 50, 53, 70, 73, 8090, 8093, 9090, 9093 [575 V class] 0, 3, 5, 6, 10, 13, 15, 16, 8090, 8093, 9090, 9093	1	9999	
	451	G300	Second motor control method selection	10 to 12, 20, 40, 9999	1	9999	
Ę	453	C201	Second motor capacity	0.1 to 30 kW, 9999	0.01 kW	9999	
star	454	C202	Number of second motor poles	2, 4, 6, 8, 10, 12, 9999	1	9999	
uoc	455	C225	Second motor excitation current	0 to 500 A, 9999	0.01 A	9999	
Second motor constant	456	C204	Rated second motor voltage	0 to 1000 V	0.1 V	[200 V class] 200 V [400 V class] 400 V [575 V class] 575 V	
Ň	457	C205	Rated second motor frequency	10 to 400 Hz, 9999	0.01 Hz	9999	
	458	C220	Second motor constant (R1)	0 to 50 Ω, 9999	0.001 Ω	9999	
	459	C221	Second motor constant (R2)	0 to 50 Ω, 9999	0.001 Ω	9999	
	460	C222	Second motor constant (L1) / d-axis inductance (Ld)	0 to 6000 mH, 9999	0.1 mH	9999	
	461	C223	Second motor constant (L2) / q-axis inductance (Lq)	0 to 6000 mH, 9999	0.1 mH	9999	
	462	C224	Second motor constant (X)	0% to 100%, 9999	0.1%	9999	
	463	C210	Second motor auto tuning setting/ status	0, 1, 11	1	0	

By UBD 495 M500 Remote output selection 0, 1, 10, 11 1 0 496 M501 Remote output data 1 0 to 4095 1 0 497 M502 Remote output data 2 0 to 4095 1 0 498 A804 PLC function flash memory clear 0,9696 (0 to 9999) 1 0 - 498 A804 PLC function flash memory clear 0,9696 (0 to 9998) 1 0 - 502 N013 Stop mode selection at 0 to 2, 6 1 0 503 E710 Maintenance timer warning output set time 0 to 9998, 9999 1 9999 - 505 M001 Speed setting reference 1 to 590 Hz 0.01 Hz 60 Hz 507 E706 Display ABC relay contact life 0% to 100% 1% 100% 509 E708 Display Dever cycle life 0 1 0 1 0 641 N100 C-Link extended setting [E800-E] 0, 1 1 0 <	value*1 Gr.2 Customer setting
498 A804 PLC function flash memory clear 0, 9666 (0 to 9999) 1 0 502 N013 Stop mode selection at communication error 0 to 2, 6 1 0 502 N013 Stop mode selection at communication error 0 to 2, 6 1 0 503 E710 Maintenance timer 0 (0 to 9998) 1 0 S04 E711 Maintenance timer warning output set time 1 to 590 Hz 0.01 Hz 80 Hz S05 M001 Speed setting reference 1 to 590 Hz 0.01 Hz 80 Hz S06 E705 Display estimated main circuit capacitor residual life 0% to 100% 1% 100% 507 E706 Display power cycle life 0% to 100% 0.01% 100% 509 E708 Display power cycle life 0% to 100% 0.1 1 0 541 N100 Cc-Link extended setting [E800-E] 0.1, 12, 14, 18, 100, 112 1 0 543	
498 A804 PLC function flash memory clear 0, 9696 (0 to 9999) 1 0 502 N013 Stop mode selection at communication error 0 to 2, 6 1 0 502 N013 Stop mode selection at communication error 0 to 2, 6 1 0 503 E710 Maintenance timer 0 (0 to 9998) 1 0 504 E711 Maintenance timer warning output set time 0 to 9998, 9999 1 9999 505 M001 Speed setting reference 1 to 590 Hz 0.01 Hz 80 Hz 506 E705 Display setimated main circuit capacitor residual life 0% to 100% 1% 100% 507 E706 Display power cycle life (0% to 100%) 0.01% 100% 509 E708 Display power cycle life 0% to 100% 0.1 1 0 541 N100 Cc-Link extended setting [E800-E] 0.1, 12, 14, 18, 100, 112, 1 1 0 543	
- 502 N013 Stop mode selection at communication error 0 to 2, 6 1 0 503 E710 Maintenance timer 0 (0 to 9998) 1 0 504 E711 Maintenance timer 0 (0 to 9998, 9999 1 9999 - 505 M001 Speed setting reference 1 to 590 Hz 0.01 Hz 60 Hz 507 E706 Display setimated main circuit co% to 100% 1% 100% 100% 507 E706 Display ABC relay contact life 0% to 100% 0.01 Hz 100% 507 E706 Display ABC relay contact life 0% to 100% 0.01% 100% 507 E706 Display ABC relay contact life (0% to 100%) 0.01% 100% 541 N100 Frequency command sign selection 0, 1 1 0 544 N103 CC-Link extended setting [E800-E] 0.1 s 9999 0.1 s 9999 550 D012 NET mode operation command source [E800] 1 0 0 9999 </td <td></td>	
S02 NO13 communication error 0 10 2.6 1 0 S03 E710 Maintenance timer 0 (0 to 9998) 1 0 S04 E711 Maintenance timer 0 (0 to 9998) 1 0 S04 E711 Maintenance timer warning output set time 0 to 9998, 9999 1 9999 - 505 M001 Speed setting reference 1 to 590 Hz 0.01 Hz 60 Hz 506 E705 Display estimated main circuit capacitor residual life (0% to 100%) 1% 100% 507 E708 Display power cycle life (0% to 100%) 0.01% 100% 509 E708 Display power cycle life (0% to 100%) 0.01% 100% 541 N100 Frequency command sign selection 0, 1 1 0 544 N103 CC-Link extended setting [E800-E] 01, 998, 8, 9999 0.1 s 9999 550 D012 NET mode operation command source selection 0, 1 1 0 6550 D	
Source 503 E710 Maintenance timer 0 (0 to 9998) 1 0 504 E711 Maintenance timer warning output set time 0 to 3998, 9999 1 9999 - 505 M001 Speed setting reference 1 to 590 Hz 0.01 Hz 60 Hz - 505 M001 Speed setting reference 1 to 590 Hz 0.01 Hz 60 Hz - 506 E705 Display estimated main circuit capacitor residual life (0% to 100%) 1% 100% 507 E706 Display ABC relay contact life (0% to 100%) 0.01% 100% 541 N100 Frequency command sign selection 0, 1 1 0 544 N103 CC-Link extended setting [E800-E] 0, 1, 12, 14, 18, 100, 112, 114, 118 1 0 549 N040 USB communication check time 0 to 311 1 0 550 D012 NET mode operation command source selection 0, 1 1 0 551 D013 PU mode operation command source Selection	
505 M001 Speed setting reference 1 to 590 Hz 0.01 Hz 60 Hz 9 506 E705 Capacitor residual life (0% to 100%) 1% 100% 507 E706 Display ABC relay contact life 0% to 100% 1% 100% 509 E708 Display ABC relay contact life 0% to 100% 0.01% 100% 509 E708 Display power cycle life (0% to 100%) 0.01% 100% 541 N100 Frequency command sign selection 0, 1 1 0 544 N103 CC-Link extended setting [E800-E] 0, 1, 12, 14, 18, 100, 112, 1 0 548 N041 USB communication check time interval 0 to 999.8 s, 9999 0.1 s 9999 550 D012 NET mode operation command source interval 0, 2, 9999 1 9999 551 D013 PU mode operation command source iselection 0 to 3, 10 to 13 1 0 10 for 0, 999.9 1, 10 is 0, 10 to 13 1 0 0 9999 </td <td></td>	
505 M001 Speed setting reference 1 to 590 Hz 0.01 Hz 60 Hz 9 506 E705 Capacitor residual life (0% to 100%) 1% 100% 507 E706 Display ABC relay contact life 0% to 100% 1% 100% 509 E708 Display ABC relay contact life 0% to 100% 0.01% 100% 509 E708 Display power cycle life (0% to 100%) 0.01% 100% 541 N100 Frequency command sign selection 0, 1 1 0 544 N103 CC-Link extended setting [E800-E] 0, 1, 12, 14, 18, 100, 112, 1 0 548 N041 USB communication check time interval 0 to 999.8 s, 9999 0.1 s 9999 550 D012 NET mode operation command source interval 0, 2, 9999 1 9999 551 D013 PU mode operation command source iselection 0 to 3, 10 to 13 1 0 10 for 0, 999.9 1, 10 is 0, 10 to 13 1 0 0 9999 </td <td></td>	
Stop EV03 capacitor residual life (0% to 100%) 1% 100% 507 E706 Display ABC relay contact life 0% to 100% 0.01% 100% 509 E708 Display power cycle life (0% to 100%) 0.01% 100% 509 E708 Display power cycle life (0% to 100%) 0.01% 100% 541 N100 Frequency command sign selection [E800-E] 0.1 1 0 544 N103 CC-Link extended setting [E800-E] 0.1, 12, 14, 18, 100, 112, 1 0 547 N040 USB communication station number 0 to 31 1 0 548 N041 IUSB communication check time interval 0 to 999.8 s, 9999 0.1 s 9999 549 N000 Protocol selection 0, 1 1 0 550 D012 NET mode operation command source selection 2, 9999 1 9999 551 D013 PU mode operation selection 0 to 3, 10 to 13 1 0 655 E720 Curre	50 Hz
509 E708 Display power cycle life (0% to 100%) 0.01% 100% 59 541 N100 Frequency command sign selection [E800-E] 0, 1 1 0 544 N103 CC-Link extended setting [E800-E] 0, 1, 12, 14, 18, 100, 112, 14, 118 1 0 59 547 N040 USB communication number 0 to 31 1 0 548 N041 USB communication check time interval 0 to 99.8 s, 9999 0.1 s 9999 549 N000 Protocol selection 0, 1 1 0 550 D012 NET mode operation command source selection [E800] 0, 2, 9999 1 9999 551 D013 PU mode operation command source selection [E800-E] 3, 4, 9999 1 9999 554 A603 PID deviation limit 0% to 100%, 9999 0.1% 9999 555 E720 Current average time 0.1 to 1 s 0.1 s 1 s 556 E721 Data output mask time 0 to 20 s 0.1 s 0 s <td></td>	
509 E708 Display power cycle life (0% to 100%) 0.01% 100% 59 541 N100 Frequency command sign selection [E800-E] 0, 1 1 0 544 N103 CC-Link extended setting [E800-E] 0, 1, 12, 14, 18, 100, 112, 14, 118 1 0 59 547 N040 USB communication number 0 to 31 1 0 548 N041 USB communication check time interval 0 to 99.8 s, 9999 0.1 s 9999 549 N000 Protocol selection 0, 1 1 0 550 D012 NET mode operation command source selection [E800] 0, 2, 9999 1 9999 551 D013 PU mode operation command source selection [E800-E] 3, 4, 9999 1 9999 554 A603 PID deviation limit 0% to 100%, 9999 0.1% 9999 555 E720 Current average time 0.1 to 1 s 0.1 s 1 s 556 E721 Data output mask time 0 to 20 s 0.1 s 0 s <td></td>	
Upper Selection 541 N100 Frequency command sign selection [E800-E] 0, 1 1 0 544 N103 CC-Link extended setting [E800-E] 0, 1, 12, 14, 18, 100, 112, 1 0 89 547 N040 USB communication station number 0 to 31 1 0 548 N041 USB communication check time interval 0 to 999.8 s, 9999 0.1 s 9999 549 N000 Protocol selection 0, 1 1 0 550 D012 NET mode operation command source selection 0, 2, 9999 [E800-E] 1 9999 551 D013 PU mode operation command source selection 1 0 9999 554 A603 PID deviation limit 0% to 100%, 9999 0.1% 9999 555 E720 Current average time 0.1 to 1 s 0.1 s 1 s 556 E721 Data output mask time 0 to 20 s 0.1 s 0 s 557 E722 Current average value monitor signal output reference current 0 to 500 A 0.01 A I	
Sec 547 N040 USB communication station number interval 0 to 31 1 0 548 N041 USB communication check time interval 0 to 999.8 s, 9999 0.1 s 9999 549 N000 Protocol selection 0, 1 1 0 550 D012 NET mode operation command source selection 0, 2, 9999 [E800-E] 1 9999 551 D013 PU mode operation command source selection [E800] 1 9999 553 A603 PID deviation limit 0% to 100%, 9999 0.1% 9999 554 A604 PID signal operation selection 0 to 3, 10 to 13 1 0 555 E720 Current average time 0.1 to 1 s 0.1 s 1 s 556 E721 Data output mask time 0 to 20 s 0.1 s 0 s 557 E722 Current average value monitor signal output reference current 0 to 500 A 0.01 A Inverter current - 560 A712 Second frequency search gain 0 to 32767, 9999 1<	
Sign 547 N040 USB communication station number interval 0 to 31 1 0 548 N041 USB communication check time interval 0 to 999.8 s, 9999 0.1 s 9999 549 N000 Protocol selection 0, 1 1 0 550 D012 NET mode operation command source selection 0, 2, 9999 [E800-E] 1 9999 551 D013 PU mode operation command source selection [E800] 1 9999 553 A603 PID deviation limit 0% to 100%, 9999 0.1% 9999 554 A604 PID signal operation selection 0 to 3, 10 to 13 1 0 555 E720 Current average time 0.1 to 1 s 0.1 s 1 s 556 E721 Data output mask time 0 to 20 s 0.1 s 0 s 557 E722 Current average value monitor signal output reference current 0 to 500 A 0.01 A Inverter current - 560 A712 Second frequency search gain 0 to 32767, 9999 1	
Superinterval Interval	
Sign 549 N000 Protocol selection 0, 1 1 0 550 D012 NET mode operation command source selection [E800] 0, 2, 9999 1 9999 551 D013 PU mode operation command source selection [E800] 2 to 4, 9999 1 9999 6 551 D013 PU mode operation command source selection [E800] 2 to 4, 9999 1 9999 553 A603 PID deviation limit 0% to 100%, 9999 0.1% 9999 554 A604 PID signal operation selection 0 to 3, 10 to 13 1 0 555 E720 Current average time 0.1 to 1 s 0.1 s 1 s 556 E721 Data output mask time 0 to 20 s 0.1 s 0 s 557 E722 Current average value monitor signal output reference current 0 to 500 A 0.01 A Inverter current - 560 A712 Second frequency search gain 0 to 32767, 9999 1 9999 - 563 M021 Energization time carrying-over	
Image: Second relation Image: Second relation<	
Image: Second Pice State of Pice Sta	
555 E720 Current average time 0.1 to 1 s 0.1 s 1 s 556 E721 Data output mask time 0 to 20 s 0.1 s 0 s 557 E722 Current average value monitor signal output reference current 0 to 500 A 0.01 A Inverter current - 560 A712 Second frequency search gain 0 to 32767, 9999 1 9999 - 563 M021 Energization time carrying-over times (0 to 65535) 1 0 - 564 M031 Operating time carrying-over times (0 to 65535) 1 0	
555 E720 Current average time 0.1 to 1 s 0.1 s 1 s 556 E721 Data output mask time 0 to 20 s 0.1 s 0 s 557 E722 Current average value monitor signal output reference current 0 to 500 A 0.01 A Inverter current - 560 A712 Second frequency search gain 0 to 32767, 9999 1 9999 - 563 M021 Energization time carrying-over times (0 to 65535) 1 0 - 564 M031 Operating time carrying-over times (0 to 65535) 1 0	
555 E720 Current average time 0.1 to 1 s 0.1 s 1 s 556 E721 Data output mask time 0 to 20 s 0.1 s 0 s 557 E722 Current average value monitor signal output reference current 0 to 500 A 0.01 A Inverter current - 560 A712 Second frequency search gain 0 to 32767, 9999 1 9999 - 563 M021 Energization time carrying-over times (0 to 65535) 1 0 - 564 M031 Operating time carrying-over times (0 to 65535) 1 0	
556 E721 Data output mask time 0 to 20 s 0.1 s 0 s 557 E722 Current average value monitor signal output reference current 0 to 500 A 0.01 A Inverter current - 560 A712 Second frequency search gain 0 to 32767, 9999 1 9999 - 563 M021 Energization time carrying-over times (0 to 65535) 1 0 - 564 M031 Operating time carrying-over times (0 to 65535) 1 0	
₹ 6 A712 Second frequency search gain 0 to 32767, 9999 1 9999 - 563 M021 Energization time carrying-over times (0 to 65535) 1 0 - 564 M031 Operating time carrying-over times (0 to 65535) 1 0	
560 A712 Second frequency search gain 0 to 32767, 9999 1 9999 563 M021 Energization time carrying-over times (0 to 65535) 1 0 564 M031 Operating time carrying-over times (0 to 65535) 1 0	
- 564 M031 Operating time carrying-over times (0 to 65535) 1 0	
ő	
570 E301 Multiple rating setting 1, 2 1 2	
- 571 F103 Holding time at a start 0 to 10 s, 9999 0.1 s 9999	
- 574 C211 Second motor online auto tuning 0, 1 1 0	
575 A621 Output interruption detection time 0 to 3600 s, 9999 0.1 s 1 s	
S75 A621 Output interruption detection time 0 to 3600 s, 9999 0.1 s 1 s 576 A622 Output interruption detection level 0 to 590 Hz 0.01 Hz 0 Hz 577 A623 Output interruption cancel level 900% to 1100% 0 1% 1000%	
577 A623 Output interruption cancel level 900% to 1100% 0.1% 1000%	
592 A300 Traverse function selection 0 to 2 1 0	
593 A301 Maximum amplitude amount 0% to 25% 0.1% 10%	
594A302Amplitude compensation amount during deceleration0% to 50%0.1%10%595A303Amplitude compensation amount during acceleration0% to 50%0.1%10%	
596 A304 Amplitude acceleration time 0.1 to 3600 s 0.1 s 5 s	
590AS04Amplitude acceleration time0.1 to 3000 s0.1 s5 s597A305Amplitude deceleration time0.1 to 3600 s0.1 s5 s	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value*1 Gr.1 Gr.2	Customer setting
	609	A624	PID set point/deviation input selection	2 to 5	1	2	
PID control	610	A625	PID measured value input selection	2 to 5	1	3	
_	611	F003	Acceleration time at a restart	0 to 3600 s, 9999	0.1 s	9999	
_	631	H182	Inverter output fault detection enable/ disable selection	0, 1	1	0	
e	639	A108	Brake opening current selection	0, 1	1	0	
Brake sequence	640	A109	Brake operation frequency selection	0, 1	1	0	
	653	G410	Speed smoothing control	0% to 200%	0.1%	0%	
Speed smoothing control	654	G411	Speed smoothing cutoff frequency	0 to 120 Hz	0.01 Hz	20 Hz	
-	665	G125	Regeneration avoidance frequency gain	0% to 200%	0.1%	100%	
_	673	G060	SF-PR slip amount adjustment operation selection [200 V class / 400 V class]	2, 4, 6, 9999	1	9999	
_	674	G061	SF-PR slip amount adjustment gain [200 V class / 400 V class]	0% to 500%	0.1%	100%	
_	675	A805	User parameter auto storage function selection	1, 9999	1	9999	
	699	T740	Input terminal filter	5 to 50 ms, 9999	1 ms	9999	
	702	C106	Maximum motor frequency	0 to 400 Hz, 9999	0.01 Hz	9999	
	706	C130	Induced voltage constant (phi f)	0 to 5000 mV (rad/s), 9999	0.1 mV (rad/s)	9999	
	707	C107	Motor inertia (integer)	10 to 999, 9999	1	9999	
ant	711	C131	Motor Ld decay ratio	0% to 100%, 9999	0.1%	9999	
nst	712	C132	Motor Lq decay ratio	0% to 100%, 9999	0.1%	9999	
Motor constant	717	C182	Starting resistance tuning compensation coefficient 1	0% to 200%, 9999	0.1%	9999	
Mot	720	C188	Starting resistance tuning compensation coefficient	0% to 200%, 9999	0.1%	9999	
	721	C185	Starting magnetic pole position detection pulse width	0 to 6000 µs, 9999	1 µs	9999	
	724	C108	Motor inertia (exponent)	0 to 7, 9999	1	9999	
L.	725 728	C133 N052	Motor protection current level Device instance number (Upper 3	100% to 500%, 9999 0 to 419	0.1%	9999 0	
erne	120	11002	digits) [E800-EPA]		·	°	
Etherne	729	N053	Device instance number (Lower 4 digits) [E800-EPA]	0 to 9999	1	0	
	737	C288	Starting resistance tuning compensation coefficient 2	0% to 200%, 9999	0.1%	9999	
	738	C230	Second motor induced voltage constant (phi f)	0 to 5000 mV (rad/s), 9999	0.1 mV (rad/s)	9999	
ŧ	739	C231	Second motor Ld decay ratio	0% to 100%, 9999	0.1%	9999	
Istai	740	C232	Second motor Lq decay ratio	0% to 100%, 9999	0.1%	9999	
Motor constant	741	C282	Second motor starting resistance tuning compensation coefficient 1	0% to 200%, 9999	0.1%	9999	
Moto	742	C285	Second motor magnetic pole detection pulse width	0 to 6000 µs, 9999	1 µs	9999	
	743	C206	Second motor maximum frequency	0 to 400 Hz, 9999	0.01 Hz	9999	
	744	C207	Second motor inertia (integer)	10 to 999, 9999	1	9999	
	745	C208		0 to 7, 9999	1	9999	
	746	C233	Second motor protection current level		0.1%	9999	
_	759	A600	Parameter for manufacturer setting. De	u nut set.			

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value*1 Gr.1 Gr.2	Customer setting
	774	M101	Operation panel monitor selection 1	[E800][E800-EPB] 1 to 3, 5 to 12, 14, 17, 18, 20, 23 to 25, 32, 33, 38,	1	9999	
Monitoring	775	M102	Operation panel monitor selection 2	40 to 42, 44, 45, 50 to 57, 61, 62, 67, 91, 97, 100, 9999 [E800-EPA] 1 to 3, 5 to 12, 14, 17, 18, 20, 23 to 25, 32, 33, 38, 40 to 42, 44, 45, 50 to 57,	1	9999	
	776	M103	Operation panel monitor selection 3	40 (6 42, 44, 45, 50 (6 57, 61, 62, 67, 83, 91, 97, 100, 9999	1	9999	
_	779	N014	Operation frequency during communication error	0 to 590 Hz, 9999	0.01 Hz	9999	
_	791	F070	Acceleration time in low-speed range	0 to 3600 s, 9999	0.1 s	9999	
_	792	F071	Deceleration time in low-speed range	0 to 3600 s, 9999	0.1 s	9999	
_	800	G200	Control method selection	10 to 12, 19, 20, 40	1	40	
_	801	H704	Output limit level	0% to 400%, 9999	0.1%	9999	
σ	803	G210	Constant output range torque characteristic selection	0 to 2, 10	1	0	
Torque command	804	D400	Torque command source selection	0, 1, 3 to 6	1	0	
lor mn	805	D401	Torque command value (RAM)	600% to 1400%	1%	1000%	
F 8	806	D402	Torque command value (RAM, EEPROM)	600% to 1400%	1%	1000%	
σ	807	H410	Speed limit selection	0, 1	1	0	
Speed limit	808	H411	Speed limit	0 to 400 Hz	0.01 Hz	60 Hz 50 Hz	
n Sr	809	H412	Reverse-side speed limit	0 to 400 Hz, 9999	0.01 Hz	9999	
	810	H700	Torque limit input method selection	0 to 2	1	0	
	811	D030	Set resolution switchover	0, 10	1	0	
ij	812	H701	Torque limit level (regeneration)	0% to 400%, 9999	0.1%	9999	
lin	813	H702	Torque limit level (3rd quadrant)	0% to 400%, 9999	0.1%	9999	
Torque limit	814	H703	Torque limit level (4th quadrant)	0% to 400%, 9999	0.1%	9999	
Tor	815	H710	Torque limit level 2	0% to 400%, 9999	0.1%	9999	
	816	H720	Torque limit level during acceleration	0% to 400%, 9999	0.1%	9999	
	817	H721	Torque limit level during deceleration	0% to 400%, 9999	0.1%	9999	
	820	G211	Speed control P gain 1	0% to 1000%	1%	60%	
	821	G212	Speed control integral time 1	0 to 20 s	0.001 s	0.333 s	
	822	T003		0 to 5 s, 9999	0.001 s	9999	
	824	G213	Torque control P gain 1 (current loop proportional gain)	0% to 500%	1%	100%	
ut	825	G214	Torque control integral time 1 (current loop integral time)	0 to 500 ms	0.1 ms	5 ms	
the	826	T004	Torque setting filter 1	0 to 5 s, 9999	0.001 s	9999	
Adjustment	830	G311	Speed control P gain 2	0% to 1000%, 9999	1%	9999	
Ad	831	G312		0 to 20 s, 9999	0.001 s	9999	
	832	T005		0 to 5 s, 9999	0.001 s	9999	
	834	G313	Torque control P gain 2 (current loop proportional gain)	0% to 500%, 9999	1%	9999	
	835	G314	Torque control integral time 2 (current loop integral time)	0 to 500 ms, 9999	0.1 ms	9999	
	836	T006		0 to 5 s, 9999	0.001 s	9999	
	849	Т007	Analog input offset adjustment	0% to 200%	0.1%	100%	
Ę	850	G103	Brake operation selection	0, 1	1	0	
ctio	853	H417		0 to 100 s	0.1 s	1 s	
lun	858	T040	•	0, 4, 9999	1	0	
Additional function	859	C126	Torque current/Rated PM motor current	0 to 500 A, 9999	0.01 A	9999	
Additi	860	C226	PM motor current	0 to 500 A, 9999	0.01 A	9999	
	864	M470	Torque detection	0% to 400%	0.1%	150%	
	865	M446	Low speed detection	0 to 590 Hz	0.01 Hz	1.5 Hz	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments		ustomer setting
Indication	866	M042	Torque monitoring reference	0% to 400%	0.1%	150%	
	867	M321	AM output filter [E800-4][E800-5]	0 to 5 s	0.01 s	0.01 s	
_	870	M440	Speed detection hysteresis	0 to 15 Hz	0.01 Hz	0 Hz	
ive n	872	H201	Input phase loss protection selection	0, 1	1	1	
Protective function	874	H730	OLT level setting	0% to 400%	0.1%	150%	
	882	G120	Regeneration avoidance operation selection	0 to 2	1	0	
Regeneration avoidance	883	G121	Regeneration avoidance operation level	300 to 1200 V	0.1 V	[200 V class] 400 V [400 V class] 780 V [575 V class] 944 V	
£	885	G123	Regeneration avoidance compensation frequency limit value	0 to 45 Hz, 9999	0.01 Hz	6 Hz	
	886	G124	Regeneration avoidance voltage gain	0% to 200%	0.1%	100%	
ter	888	E420	Free parameter 1	0 to 9999	1	9999	
Free parameter	889	E421	Free parameter 2	0 to 9999	1	9999	
	891	M023	Cumulative power monitor digit shifted times	0 to 4, 9999	1	9999	
bu	892	M200	Load factor	30% to 150%	0.1%	100%	
Energy saving monitoring	893	M201	Energy saving monitor reference (motor capacity)	0.1 to 30 kW	0.01 kW	Inverter rated capacity	
om gr	894	M202	Control selection during commercial power-supply operation	0 to 3	1	0	
avir	895	M203	Power saving rate reference value	0, 1, 9999	1	9999	
ς Σ	896	M204	Power unit cost	0 to 500, 9999	0.01	9999	
erg	897	M205	Power saving monitor average time	0 to 1000 h, 9999	1 h	9999	
En	898	M206	Power saving cumulative monitor clear	0, 1, 10, 9999	1	9999	
	899	M207	,	0% to 100%, 9999	0.1%	9999	
	C0	M310	FM terminal calibration [E800-1]	_	_	<u> </u>	
	C1	M320	AM terminal calibration [E800- 4][E800-5]	_	<u> </u>	-	
	C2	T200	Terminal 2 frequency setting bias frequency	0 to 590 Hz	0.01 Hz	0 Hz	
	C3	T201	Terminal 2 frequency setting bias	0% to 300%	0.1%	0%	
eter	125	T202	Terminal 2 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
ame	C4	T203	Terminal 2 frequency setting gain	0% to 300%	0.1%	100%	
n par	C5	T400	Terminal 4 frequency setting bias frequency	0 to 590 Hz	0.01 Hz	0 Hz	
itior	C6	T401	Terminal 4 frequency setting bias	0% to 300%	0.1%	20%	
Calibration parameter	126	T402	Terminal 4 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	
ů	C7	T403	Terminal 4 frequency setting gain	0% to 300%	0.1%	100%	
	C38	T410	Terminal 4 bias command (torque/ magnetic flux)	0% to 400%	0.1%	0%	
	C39	T411	Terminal 4 bias (torque/magnetic flux)	0% to 300%	0.1%	20%	
	C40	T412	Terminal 4 gain command (torque/	0% to 400%	0.1%	150%	
	L		magnetic flux)				
	C41 C42	T413 A630	Terminal 4 gain (torque/magnetic flux) PID display bias coefficient	0% to 300% 0 to 500, 9999	0.1% 0.01	100% 9999	
, a	C42 C43	A630	PID display bias analog value	0% to 300%	0.01	20%	
PID display	C43	A632	PID display gain coefficient	0 to 500, 9999	0.01	9999	
di	C44 C45	A633	PID display gain analog value	0% to 300%	0.1%	100%	
	990	E104					
—	991	E105	Parameter for manufacturer setting. De	o not set.			
Monitoring	992	M104	Operation panel setting dial push monitor selection	0 to 3, 5 to 12, 14, 17, 18, 20, 23 to 25, 32, 33, 38, 40 to 42, 44, 45, 50 to 57, 61, 62, 67, 91, 97, 100	1	0	
Ś			l	, =, =_, =_, =_, =_, =_, =_, =_,			

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value*1 Gr.1 Gr.2	Customer setting
-	997	H103	Fault initiation	0 to 255, 9999	1	9999	
_	998	E430	PM parameter initialization Simple	0, 8009, 8109, 9009, 9109,	1	0	
-	999	E431	Automatic parameter setting	10, 12, 20, 21, 9999	1	9999	
_	1000	E108	Parameter for manufacturer setting. D	o not set.	ı		
	1002	C150	Lq tuning target current adjustment coefficient	50% to 150%, 9999	0.1%	9999	
¥	1006	E020	Clock (year)	2000 to 2099	1	2000	
Clock	1007	E021	Clock (month, day)	Jan. 1 to Dec. 31	1	101	
C	1008	E022	Clock (hour, minute)	0:00 to 23:59	1	0	
-	1015	A607	Integral stop selection at limited frequency	0 to 2	1	0	
	1020	A900	Trace operation selection	0 to 3	1	0	
	1022	A902	Sampling cycle	1, 2, 5, 10, 50, 100, 500, 1000	1	1	
	1023	A903	Number of analog channels	1 to 8	1	4	1
	1024	A904	Sampling auto start	0, 1	1	0	
	1025	A905	Trigger mode selection	0 to 4	1	0	
	1026	A906	Number of sampling before trigger	0% to 100%	1%	90%	
	1027	A910	Analog source selection (1ch)			201	
	1028	A911	Analog source selection (2ch)			202	
	1029	A912	Analog source selection (3ch)	1 to 3, 5 to 12, 14, 17, 18, 20, 23, 24, 32, 33, 40 to		203	1
	1030	A913	Analog source selection (4ch)	42, 52 to 54, 61, 62, 67,	1	204	
	1031	A914	Analog source selection (5ch)	83 [E800-EPA], 91, 97, 201 to 210, 212, 213, 230	1	205	
	1032	A915	Analog source selection (6ch)	to 232, 235 to 238		206	
9	1033	A916	Analog source selection (7ch)			207	
Trace	1034	A917	Analog source selection (8ch)			208	
	1035	A918	Analog trigger channel	1 to 8	1	1	1
	1036	A919	Analog trigger operation selection	0, 1	1	0	
	1037	A920	Analog trigger level	600 to 1400	1	1000	
	1038	A930	Digital source selection (1ch)			0	
	1039	A931	Digital source selection (2ch)		1	0	
	1040	A932	Digital source selection (3ch)			0	
	1041	A933	Digital source selection (4ch)	0 to 255		0	
	1042	A934	Digital source selection (5ch)	0 10 200		0	
	1043	A935	Digital source selection (6ch)			0	
	1044	A936	Digital source selection (7ch)			0	
	1045	A937	Digital source selection (8ch)			0	1
	1046	A938	Digital trigger channel	1 to 8	1	1	
	1047	A939	Digital trigger operation selection	0, 1	1	0	
_	1103	F040	• • •	0 to 3600 s	0.1 s	5 s	
ing	1106	M050		0 to 5 s, 9999	0.01 s	9999	
itor	1107	M051	Running speed monitor filter	0 to 5 s, 9999	0.01 s	9999	
Monitoring	1108	M052	Excitation current monitor filter	0 to 5 s, 9999	0.01 s	9999	
_	1124	N681		0 to 5, 9999	1	9999	
-	1125	N682	Number of inverters in inverter-to- inverter link system [E800-E]	2 to 6	1	2	
PLC function	1150 to 1199	A810 to A859	PLC function user parameters 1 to 50	0 to 65535	1	0	
_	1200	M390	AM output offset calibration [E800- 4][E800-5]	2700 to 3300	1	3000	
_	1399	N649	Inverter identification enable/disable selection [E800-E]	0, 1	1	1	
_	1412	C135	Motor induced voltage constant (phi f) exponent	0 to 2, 9999	1	9999	
_	1413	C235	Second motor induced voltage constant (phi f) exponent	0 to 2, 9999	1	9999	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value*1 Gr.1 Gr.2	Customer setting
	1424	N650	Ethernet communication network number	1 to 239	1	1	
	1425	N651	Ethernet communication station number	1 to 120	1	1	
ction	1426	N641	Link speed and duplex mode selection	0 to 4	1	0	
n sele	1427	N630	Ethernet function selection 1	[E800-EPA] 502, 5000 to 5002, 5006	1	5001	
nctio	1428	N631	Ethernet function selection 2	to 5008, 5010 to 5013, 44818, 45237, 45238, 47808, 61450, 9999	1	45237	
Ethernet function selection	1429	N632	Ethernet function selection 3	[E800-EPB] 502, 5000 to 5002, 5006 to 5008, 5010 to 5013,	1	45238	
Ether	1430	N633	Ethernet function selection 4	34962, 45237, 45238, 61450, 9999	1	9999	
	1431	N643	Ethernet signal loss detection function selection	0 to 3	1	3	
	1432	N644	Ethernet communication check time interval	0 to 999.8 s, 9999	0.1 s	1.5	
	1434	N600	Ethernet IP address 1	0 to 255	1	192	
	1435	N601	Ethernet IP address 2	0 to 255	1	168	
	1436	N602	Ethernet IP address 3	0 to 255	1	50	
	1437	N603	Ethernet IP address 4	0 to 255	1	1	
	1438	N610	Subnet mask 1	0 to 255	1	255	
	1439	N611	Subnet mask 2	0 to 255	1	255	
	1440	N612	Subnet mask 3	0 to 255	1	255	
	1441	N613	Subnet mask 4	0 to 255	1	0	
	1442	N660	Ethernet IP filter address 1	0 to 255	1	0	
	1443	N661	Ethernet IP filter address 2	0 to 255	1	0	
	1444	N662	Ethernet IP filter address 3	0 to 255	1	0	
	1445	N663	Ethernet IP filter address 4	0 to 255	1	0	
	1446	N664	Ethornot ID filtor address 2 range	0 to 255, 9999	1	9999	
met	1447	N665	Ethernet IP filter address 3 range specification	0 to 255, 9999	1	9999	
Ethernet	1448	N666	Ethernet IP filter address 4 range specification	0 to 255, 9999	1	9999	
	1449	N670	Ethernet command source selection IP address 1	0 to 255	1	0	
	1450	N671	Ethernet command source selection IP address 2	0 to 255	1	0	
	1451	N672	Ethernet command source selection IP address 3	0 to 255	1	0	
	1452	N673	Ethernet command source selection IP address 4	0 to 255	1	0	
	1453	N674	Ethernet command source selection IP address 3 range specification	0 to 255, 9999	1	9999	
	1454	N675	Ethernet command source selection IP address 4 range specification	0 to 255, 9999	1	9999	
	1455	N642	Keepalive time	1 to 7200 s	1	60 s	
	1456	N647	Network diagnosis selection	0 to 2, 9999	1	9999	
	1457	N648	Extended setting for Ethernet signal loss detection function selection	0 to 3, 8888, 9999	1	9999	

F	Du	D	N and a	0.4	Minimum	Initial	value*1	Customer
Function	Pr.	Pr. group	Name	Setting range	setting increments	Gr.1	Gr.2	setting
	1480	H520	Load characteristics measurement mode	0, 1 (2 to 5, 81 to 85)	1	0		
	1481	H521	Load characteristics load reference 1	0% to 400%, 8888, 9999	0.1%	9999		
lo	1482	H522	Load characteristics load reference 2	0% to 400%, 8888, 9999	0.1%	9999		
ect	1483	H523	Load characteristics load reference 3	0% to 400%, 8888, 9999	0.1%	9999		
det	1484	H524	Load characteristics load reference 4	0% to 400%, 8888, 9999	0.1%	9999		
nt	1485	H525	Load characteristics load reference 5	0% to 400%, 8888, 9999	0.1%	9999		
Load characteristics fault detection	1486	H526	Load characteristics maximum frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	
terist	1487	H527	Load characteristics minimum frequency	0 to 590 Hz	0.01 Hz	6 Hz		
Irac	1488 H531		Upper limit warning detection width	0% to 400%, 9999	0.1%	20%		
che	1489	H532	Lower limit warning detection width	0% to 400%, 9999	0.1%	20%		
ad	1490	H533	Upper limit fault detection width	0% to 400%, 9999	0.1%	9999		
Г	1491	H534	Lower limit fault detection width	0% to 400%, 9999	0.1%	9999		
	1492	H535	Load status detection signal delay time / load reference measurement waiting time	0 to 60 s	0.1 s	1 s		
srs	PR.CL		Parameter clear	(0), 1	1	0		
Clear amete	ALLC		All parameter clear	(0), 1	1	0		
Clear parameters	ER.CL		Fault history clear	(0), 1	1	0		
_	PR.CH		Initial value change list	—	1	0		
—	PM		PM initialization	0	1	0		
—	AUTO		Automatic parameter setting	—				
_	PR.MD		Group parameter setting	(0), 1, 2	1	0		

Gr.1 and Gr.2 are the parameter initial value groups. *1

- *2
- Differs depending on the capacity.
 6%: FR-E820-0050(0.75K) or lower, FR-E840-0026(0.75K) or lower
 - 5%: FR-E860-0017(0.75K)

4%: FR-E820-0080(1.5K) to FR-E820-0175(3.7K), FR-E840-0040(1.5K) to FR-E840-0095(3.7K)

- 3%: FR-E820-0240(5.5K) or higher, FR-E840-0120(5.5K) or higher, FR-E860-0027(1.5K) to 0040(2.2K)

 2%: FR-E860-0061(3.7K) or higher
 Differs depending on the capacity.
 5 s: FR-E820-0175(3.7K) or lower, FR-E840-0095(3.7K) or lower, FR-E860-0061(3.7K) or lower
 10 s: FR-E820-0240(5.5K) or higher, FR-E840-0120(5.5K) or higher, FR-E860-0090(5.5K) or higher *3

- Differs depending on the capacity. 6%: FR-E820-0015(0.2K) or lower *4 4%: FR-E820-0030(0.4K) to FR-E820-0330(7.5K), FR-E840-0016(0.4K) to FR-E840-0170(7.5K) 1%: FR-E860-0017(0.75K) to FR-E860-0120(7.5K)
- *5
- For the Ethernet model, the setting is available only when the FR-A8AY is installed. aAvailable when the PLC function is enabled. (**Pr.313 to Pr.315** are always available for settings in the Ethernet model.) *6 *7

For the standard model, the setting is available only when a communication option is installed.

• Error message

A message regarding operational fault or setting fault on the operation panel is displayed. The inverter output is not shut off.

	Operation panel Name indication		Description			
Kold	HOLD Operation panel lock		peration lock is set. Operation other than pressing the STOP/RESET key is disabled.			
Loĺď			assword function is active. Display and setting of parameters are restricted.			
Er ¦ ^{to} Er 4		Parameter write error	Appears when an error occurred during parameter writing.			
Err.	Err.	Error	r The RES signal is turned ON. I This error may occur when the voltage at the input side of the inverter drops.			

• Warning

The inverter output is not shut off even when a warning is displayed. However, failure to take appropriate measures will lead to a fault.

Operation p indicatio		Name	Data code	Description
oll	OLC	Stall prevention (overcurrent)	1 (H01)	When the output current of the inverter increases, the stall prevention (overcurrent) function is activated.
olu	OLV	Stall prevention (overvoltage)	2 (H02)	 When the output voltage of the inverter increases, the stall prevention (overvoltage) function is activated. The regeneration avoidance function is activated due to excessive regenerative power of the motor.
r b	RB	pre-alarm	3 (H03)	Appears if the regenerative brake duty reaches or exceeds 85% of the Pr.70 Special regenerative brake duty value. If the regenerative brake duty reaches 100%, a regenerative overvoltage (E. OV[]) occurs.
ГH	тн	Electronic thermal relay function pre- alarm	4 (H04)	Appears if the cumulative value of the electronic thermal O/L relay reaches or exceeds 85% of the preset level of Pr.9 Electronic thermal O/L relay.
PS	PS	PU stop	6 (H06)	 The motor is stopped using the STOP/RESET key under the mode other than the PU operation mode. The motor is stopped by the emergency stop function.
56	SL	Speed limit indication	9 (H09)	Output if the speed limit level is exceeded during torque control.
58	SA	Safety stop	12 (H0C)	Appears when safety stop function is activated (during output shutoff).
nr	МТ	Maintenance timer *3	8 (H08)	Appears when the inverter's cumulative energization time reaches or exceeds the parameter set value.
[F	CF	Continuous operation during communication fault	10 (H0A)	Appears when the operation continues while an error is occurring in the communication line or communication option (when Pr.502 = "4").
LdF	LDF	Load fault warning	26 (H1A)	Appears when the load is deviated from the detection width set in Pr.1488 Upper limit warning detection width or Pr.1489 Lower limit warning detection width.
EHr	EHR	Ethernet communication fault	28 (H1C)	Appears when Ethernet communication is interrupted by physical factors while Pr.1431 Ethernet signal loss detection function selection = "1 to 3".
d iP	DIP	Duplicate IP address	32 (H20)	Appears when duplicate IP address is detected.
, <i>P</i>	IP	IP address fault	38 (H26)	Appears when the IP address or the subnet mask is out of the specified range.
58	SE	Incorrect parameter setting	48 (H30)	Appears when the combination of setting values of Pr.451 and Pr.800 is incorrect, and the inverter output is shut off.
Uu	υv	Stall prevention (overcurrent)	-	If the power supply voltage of the inverter decreases, the control circuit will not perform normal functions. In addition, the motor torque will be insufficient and/or heat generation will increase. To prevent this, if the power supply voltage decreases to about 115 VAC (230 VAC for the 400 V class, 330 VAC for the 575 V class) or below, this function shuts off the inverter output and "UV" is displayed. The warning is removed when the voltage returns to normal.

• Alarm

The inverter output is not shut off. An Alarm (LF) signal can also be output with a parameter setting.

Operation panel indication		Name	Description
Fn	FN	Fan alarm	For the inverter that contains a cooling fan, FN appears on the operation panel when the cooling fan stops due to a fault, low rotation speed, or different operation from the setting of Pr.244 Cooling fan operation selection.

• Fault

When a protective function is activated, the inverter output is shut off and a Fault (ALM) signal is output. The data code is used for checking the fault detail via communication or with Pr.997 Fault initiation.

◆ Data code 16 to 199

	ration pandication		Name	Data code	Description
5.o£	1	E.OC1	Overcurrent trip during acceleration	16 (H10)	When the inverter output current reaches or exceeds approximately 230%*4 of the rated current during acceleration, the protection circuit is activated and the inverter output is shut off.
E.o C	2	E.OC2	speed	17 (H11)	When the inverter output current reaches or exceeds approximately 230%*4 of the rated current during constantspeed operation, the protection circuit is activated and the inverter output is shut off.
E.o [3	E.OC3	Overcurrent trip during deceleration or stop	18 (H12)	When the inverter output current reaches or exceeds approximately 230%*4 of the rated current during deceleration (other than acceleration or constant speed), the protection circuit is activated and the inverter output is shut off.
E.o u	1	E.OV1	Regenerative overvoltage trip during acceleration	32 (H20)	If regenerative power causes the inverter's internal main circuit DC voltage to reach or exceed the specified value, the protection circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system.
E.o u	2	E.OV2	during constant speed	33 (H21)	If regenerative power causes the inverter's internal main circuit DC voltage to reach or exceed the specified value, the protection circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system.
E.o u	3	E.OV3	Regenerative overvoltage trip during deceleration or stop	34 (H22)	If regenerative power causes the inverter's internal main circuit DC voltage to reach or exceed the specified value, the protection circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system.
E.C H	[E.THT	Inverter overload trip (electronic thermal relay function)*1	48 (H30)	If the temperature of the output transistor elements exceeds the protection level with a rated output current or higher flowing without the overcurrent trip (E.OC[]), the inverter output is stopped. (Overload capacity 150% 60 s)
Е.Г Н	n	E.THM	Motor overload trip (electronic thermal relay function)*1	49 (H31)	The electronic thermal O/L relay function in the inverter detects motor overheat, which is caused by overload or reduced cooling capability during low-speed operation. When the cumulative heat value reaches 85% of the Pr.9 Electronic thermal O/L relay setting, pre-alarm (TH) is output. When the accumulated value reaches the specified value, the protection circuit is activated to stop the inverter output.
E.F.,	n	E.FIN	Heat sink overheat	64 (H40)	When the heatsink overheats, the temperature sensor is activated, and the inverter output is stopped.
E.Uu	ſ	E.UVT	Undervoltage	81 (H51)	When a PM motor is used, the protective function is activated in the following case: a fault such as power failure or voltage drop occurs, the converter voltage drops to cause the motor to coast, and restarting and coasting are repeated by the automatic restart after instantaneous power failure function.
E. L	F	E.ILF	Input phase loss*3	82 (H52)	When Pr.872 Input phase loss protection selection is enabled ("1") and one of the three-phase power input is lost, the inverter output is shut off.
E.oL		E.OLT	Stall prevention stop	96 (H60)	If the output frequency has fallen to 0.5 Hz by stall prevention operation and remains for 3 seconds, a fault (E.OLT) appears and the inverter is shut off. OLC or OLV appears while stall prevention is being activated.
8.So	[E.SOT	Loss of synchronism detection	97 (H61)	The inverter output is shut off when the motor operation is not synchronized. (This function is only available under PM sensorless vector control.)
E.L U	P	E.LUP		98 (H62)	The inverter output is shut off when the load exceeds the upper limit fault detection range.
E.L d	n	E.LDN	Lower limit fault detection*3	99 (H63)	The inverter output is shut off when the load falls below the lower limit fault detection range.
8.58		E.BE		112 (H70)	The inverter output is shut off if a fault due to damage of the brake transistor and such occurs in the brake circuit. In such a case, the power supply to the inverter must be shut off immediately.
8.G.F		E.GF	Output side earth (ground) fault overcurrent	128 (H80)	The inverter output is shut off if an earth (ground) fault overcurrent flows due to an earth (ground) fault that occurred on the inverter's output side (load side).
E.L F		E.LF	Output phase loss	129 (H81)	The inverter output is shut off if one of the three phases (U, V, W) on the inverter's output side (load side) is lost.
E.o H	[E.OHT	External thermal relay operation*2*3	144 (H90)	The inverter output is shut off if the external thermal relay provided for motor overheat protection or the internally mounted thermal relay in the motor, etc. switches ON (contacts open).
E.0 P		E.OPT	Option fault	160 (HA0)	 Appears when the AC power supply is connected to terminal R/L1, S/L2, or T/L3 accidentally when a high power factor converter (FR-HC2) or multifunction regeneration converter (FR-XC in common bus regeneration mode) is connected (when Pr.30 Regenerative function selection = "0 or 2"). Appears when the switch for manufacturer setting of the plug-in option is changed. Appears when a communication option is connected while Pr.296 Password lock level = "0 or 100".
E.oP	1	E.OP1	Communication option fault	161 (HA1)	The inverter output is shut off if a communication line error occurs in the communication option.

	Operation pa indication		Name	Data code	Description					
Ε.	18	E.16		164 (HA4)						
Ε.	17	E.17		165 (HA5)	The protective function is activated by setting "16 to 20" in the special register SD1214					
E.	18	E.18	User definition error by the PLC function*3	166 (HA6)	for the PLC function. The inverter output is shut off when the protective function is activated.					
٤.	19	E.19	iuncuon*3	167 (HA7)	The protective function is activated when the PLC function is enabled.					
Ε.	20	E.20		168 (HA8)						
<i>E.</i> F	PE	E.PE	Parameter storage device fault (control circuit board)	176 (HB0)	The inverter output is shut off if a fault occurs in the parameter stored. (EEPROM failure)					
E.F	PUE	E.PUE	PU disconnection	177 (HB1)	 The inverter output is shut off if communication between the inverter and PU is suspended, e.g. the operation panel is disconnected, when the disconnected PU detection function is valid in Pr.75 Reset selection/disconnected PU detection/PU stop selection. The inverter output is shut off if communication errors occurred consecutively for more than permissible number of retries when Pr.121 PU communication retry count ≠ "9999" during the RS-485 communication. The inverter output is shut off if communication is broken within the period of time set in Pr.122 PU communication check time interval during the RS-485 communication via the PU connector. 					
E.r	- 61	E.RET	Retry count excess*3	178 (HB2)	The inverter output is shut off if the operation cannot be resumed properly within the number of retries set in Pr.67 Number of retries at fault occurrence.					
		E.PE2	Parameter storage device fault (main circuit board)	179 (HB3)	The inverter output is shut off if a fault occurs in the inverter model information.					
<i>E.C</i>	<u>Pu</u>	E.CPU	CPU fault	192 (HC0)	The inverter output is shut off if the communication fault of the built-in CPU occurs.					
6.0	ldo	E.CDO	Inrush current limit circuit fault∗3	196 (HC4)	The inverter output is shut off if the output current exceeds the Pr.150 Output current detection level setting.					
6.	οН	E.IOH	Analog input fault	197 (HC5)	The inverter output is shut off when the resistor of the inrush current limit circuit is overheated. The inrush current limit circuit is faulty.					
<i>E.</i> ?	R, E	E.AIE	Communication option fault	199 (HC7)	The inverter output is shut off when a 30 mA or higher current or a 7.5 V or higher voltage is input to terminal 2 while the current input is selected by Pr.73 Analog input selection, or to terminal 4 while the current input is selected by Pr.267 Terminal 4 input selection.					

♦ Data code 200 or more

Operation p indicatio		Name	Data code	Description
E.USb	E.USB	USB communication fault	200 (HC8)	The inverter output is shut off when the communication is cut off for the time set in Pr.548 USB communication check time interval.
8.5 <i>8</i> .5	E.SAF	Safety circuit fault	201 (HC9)	 The inverter output is shut off when a safety circuit fault occurs. The inverter output is shut off if the either of the wire between S1 and SIC or S2 and SIC becomes nonconductive while using the safety stop function. When the safety stop function is not used, the inverter output is shut off when the shorting wire between terminals S1 and PC or across S2 and PC is disconnected.
E.o S	E.OS	Overspeed occurrence*3	208 (HD0)	The inverter output is shut off when the motor speed exceeds the Pr.374 Overspeed detection level under Real sensorless vector control and PM sensorless vector control.
E.o 5 d	E.OSD	Speed deviation excess detection	209 (HD1)	The inverter output is shut off if the motor speed is increased or decreased under the influence of the load etc. with Pr.285 Overspeed detection frequency set and cannot be controlled in accordance with the speed command value.
E.N.6 4	E.MB4		216 (HD8)	
8.065	E.MB5	Brake sequence	217 (HD9)	The inverter output is shut off when a sequence error occurs during use of the brake
8.066	E.MB6	fault*3	218 (HDA)	sequence function (Pr.278 to Pr.283).
6,069	E.MB7		219 (HDB)	
8.P. d	E.PID	PID signal fault*3	230 (HE6)	The inverter output is shut off if the measured value exceeds the PID upper limit or PID lower limit parameter setting, or the absolute deviation value exceeds the PID deviation parameter setting during PID control.

	Operation p indicatio		Name	Data code	Description
E.E	Hr	E.EHR	Ethernet communication fault	231 (HE7)	 Appears when Ethernet communication is interrupted by physical factors while Pr.1431 Ethernet signal loss detection function selection = "3" or Pr.1457 Ethernet signal loss detection function selection (extended setting) = "3". The inverter output is shut off if Ethernet communication is broken for the time set in Pr.1432 Ethernet communication check time interval or longer for all devices with IP addresses in the range specified for Ethernet command source selection (Pr.1449 to Pr.1454). Check that the Pr.1432 setting is not too short. When the CC-Link IE Field Network Basic is used, the inverter output is shut off in the following cases: the data addressed to the own station is not received for the predetermined timeout period or longer, or the status bit of the cyclic transmission addressed to the own station turns OFF (when the master inverter gives a command to stop the cyclic transmission). When BACnet/IP is used, the inverter output will be shut off after the time period set in Pr.1432 after power is supplied to the inverter if an IP address of any other inverter falls within the Ethernet IP address range set for command source selection.
6.0	116	E.CMB	Board combination mismatch	232 (HE8)	The board combination is not appropriate.
Ε.	1	E.1	Option fault	241 (HF1)	 The inverter output is shut off when a contact fault is found between the inverter and the plug-in option, or when the communication option is not connected to the connector 1. Appears when the switch for manufacturer setting of the plug-in option is changed.
E.	5	E.5		245 (HF5)	
<u>wiwiwi</u>	<u>5</u> <u>6</u> 0	E.6	CPU fault	246 (HF6)	The inverter output is shut off if the communication fault of the built-in CPU occurs.
E.	<u> </u>	E.7		247 (HF7)	
E.	10	E.10	Output side fault	250 (HFA)	The inverter output is shut off if the inverter detects an output current fault such as an earth (ground) fault that occurred on the inverter's output side (load side).
ε.		E.11	Opposite rotation deceleration fault*3	251 (HFB)	The speed may not decelerate during low speed operation if the rotation direction of the speed command and the estimated speed differ when the rotation is changing from forward to reverse or from reverse to forward during torque control under Real sensorless vector control. The inverter output is shut off when overload occurs due to the un-switched rotation direction.
<i>E</i> .	13	E.13	Internal circuit fault (15 V poser supply)	253 (HFD)	Appears when the internal circuit is faulty.

Others

The fault history and the operation status of the inverter are displayed. It is not a fault indication.

Operation par indication		Name
6 Fa	ault history	The operation panel stores the fault indications which appear when a protective function is activated to display the fault record for the past 10 faults.

*1 *2 *3 *4

Resetting the inverter initializes the internal cumulative heat value of the electronic thermal O/L relay function. The external thermal operates only when the OH signal is set in **Pr.178 to Pr.189 (input terminal function selection)**. This protective function is not available in the initial status. Differs according to ratings. The rating can be changed using **Pr.570 Multiple rating setting**. 170% for LD rating, 230% for ND rating (initial setting) (FR-E820-0175(3.7K) or lower, FR-E840-0095(3.7K) or lower, FR-E860-0061(3.7K) or lower), and 235% for ND rating (initial value) (FR-E820-0240(5.5K) or higher, FR-E840-0120(5.5K) or higher, FR-E860-0090(5.5K) or higher)

Three-phase 200 V power supply

				0.1K	0.2K	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	
	Mo	derFR	-E820-[]	0008	0015	0030	0050	0080	0110	0175	0240	0330	
Applicable motor LD				0.2	0.4	0.75	1.1	2.2	3.0	5.5	7.5	11	
capa	city (kW)*1		ND	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	
	Rated cap	acity	LD	0.5	0.8	1.4	2.4	3.8	4.8	7.8	12.0	15.9	
	(kVA)*2		ND	0.3	0.6	1.2	2.0	3.2	4.4	7.0	9.6	13.1	
	Rated curr	ent	LD	1.3 (1.1)	2 (1.7)	3.5 (3.0)	6.0(5.1)	9.6 (8.2)	12 (10.2)	19.6 (16.7)	30 (25.5)	40 (34)	
	(A)*7		ND	0.8 (0.8)	1.5 (1.4)	3 (2.5)	5 (4.1)	8 (7)	11 (10)	17.5 (16.5)	24 (23)	33 (31)	
pud	Overload of	current	LD	120% 60 s	s, 150% 3 s	(inverse-tim	e character	istics) at su	rrounding ai	r temperatu	re of 50°C		
Output	rating*3		ND	150% 60 s, 200% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C									
U	Rated volta	age*4		Three-pha	se 200 to 24	40 V							
	Regenerat	nerat Brake transistor		-		Built-in							
	ive braking Maxim		num brake torque*5	150%		100%		50%	20%				
	Rated input AC voltage/frequency			Three-phase 200 to 240 V 50 Hz / 60 Hz									
	Permissible AC voltage fluctuation			170 to 264 V 50 Hz / 60 Hz									
	Permissibl	e frequ	ency fluctuation	±5%									
Š	Rated	LD		1.9	3.0	5.1	8.2	13	16	26	37	49	
supply	input		With DC reactor	1.3	2.0	3.5	6.0	9.6	12	20	30	40	
S	current	ND	Without DC reactor	1.4	2.3	4.5	7.0	11	15	23	30	41	
Power	(A)*8			0.8	1.5	3.0	5.0	8.0	11	17.5	24	33	
Ъ	Power	LD		0.7	1.1	1.9	3.1	4.8	6.2	9.7	14	19	
	supply	LD		0.5	0.8	1.3	2.3	3.7	4.6	7.5	11	15	
	capacity	ND	Without DC reactor		0.9	1.7	2.7	4.1	5.7	8.8	12	16	
	(kVA)*6			0.3	0.6	1.1	1.9	3.0	4.2	6.7	9.1	13	
	ective struct	ure (IE		Enclosed t	ype (IP20)								
	ing system			Natural				Forced air					
Appr	oximate ma	iss (kg)	1	0.5	0.5	0.7	1.0	1.4	1.4	1.8	3.3	3.3	

Three-phase 400 V class

	Mod	lel FR-	E840-[]	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K		
				0016	0026	0040	0060	0095	0120	0170		
	cable motor		LD	0.75	1.5	2.2	3.0	5.5	7.5	11		
	city (kW)*1		ND	0.4	0.75	1.5	2.2	3.7	5.5	7.5		
	Rated capa	acity	LD	1.6	2.7	4.2	5.3	8.5	13.3	17.5		
	(kVA)*2		ND	1.2	2.0	3.0	4.6	7.2	9.1	13.0		
	Rated curre	ent	LD	2.1 (1.8)		· · ·	6.9 (5.9)		17.5 (14.9)			
	(A)*7		ND			4 (3.8)	6 (5.4)	9.5 (8.7)	12	17		
			LD	120% 60 s	, 150% 3 s (inverse-tim	e characteri	stics) at sur	rounding air			
bn	Overload c	urrent	LD	temperature of 50°C								
Output	rating*3		ND	150% 60 s	, 200% 3 s (inverse-tim	e characteri	stics) at sur	rounding air			
U			ND	150% 60 s, 200% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C								
	Rated volta	age*4		Three-phas	se 380 to 48	80 V						
	Regenerat Brake transistor		Built-in									
	ive	Maxim	um brake torque*5	100% 50% 20%								
	braking		uni brake lorque*3									
	Rated input AC voltage/frequency		Three-phase 380 to 480 V 50 Hz / 60 Hz									
	Permissible	e AC vo	oltage fluctuation	323 to 528 V 50 Hz / 60 Hz								
	Permissible	e freque	ency fluctuation	±5%								
≥	Rated	LD	Without DC reactor	3.3	6.0	8.9	11	16	25	32		
ddr	input	LD	With DC reactor	2.1	3.5	5.5	6.9	11	18	23		
Power supply	current	ND	Without DC reactor	2.7	4.4	6.7	9.5	14	18	25		
Åe	(A)*8	ND	With DC reactor	1.6	2.6	4.0	6.0	9.5	12	17		
Po	Power		Without DC reactor	2.5	4.5	6.8	8.2	12	19	25		
	supply	LD	With DC reactor	1.6	2.7	4.2	5.3	8.5	13	18		
	capacity		Without DC reactor	2.1	3.4	5.1	7.2	11	14	19		
	(kVA)*6		With DC reactor	1.2	2.0	3.0	4.6	7.2	9.1	13		
Prote	ctive structu	ure (IEC	C 60529)	Enclosed ty	ype (IP20)					•		
Cooli	ng system			Natural		Forced air						
Appro	oximate mas	ss (kg)		1.2	1.2	1.4	1.8	1.8	2.4	2.4		

The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor. The rated output capacity indicated assumes that the output voltage is 230 V for three-phase 200 V class and 440 V for three-phase 400 V class.

*2

*3 The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the

The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the pulse *4 voltage value of the inverter output side voltage remains unchanged at about 12 that of the power supply.

The braking torque indicated is a short-duration average torque (which varies with motor loss) when the motor alone is decelerated from 60 Hz in the shortest time and is not a continuous regenerative torque. When the motor is decelerated from the frequency higher than the base frequency, the average deceleration torque will reduce. *5 Since the inverter does not contain a brake resistor, use the optional brake resistor when regenerative energy is large. A brake unit (FR-BU2) may also be used. (Option brake resistor cannot be used for 0.1K and 0.2K.)

*6

The power supply capacity varies with the value of the power supply side inverter impedance (including those of the input reactor and cables). Setting 2 kHz or more in **Pr. 72 PWM frequency selection** to perform low acoustic noise operation in the surrounding air temperature exceeding 40°C, the rated output *7 current is the value in parenthesis. The rated input current is the value when at the rated output current. The input power impedances (including those of the input reactor and cables) affect the value.

*8

4

Three-phase 575 V class ٠

	Mo		-E860-[]	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K					
	INIO		-E000-[]	0017	0027	0040	0061	0090	0120					
Appli	icable motor	r	LD	1.5	2.2	3.7	5.5	7.5	11					
capa	city (kW)*1		ND	0.75	1.5	2.2	3.7	5.5	7.5					
	Rated capa	acity	LD	2.5	3.6	5.6	8.2	11.0	15.9					
	(kVA)*2		ND	1.7	2.7	4.0	6.1	9.0	12.0					
	Rated curre	ent	LD	2.5 (2.1)	3.6 (3.0)	5.6 (4.8)	8.2 (7.0)	11 (9.0)	16 (13.6)					
Ţ	(A)*7		ND	1.7	2.7	4	6.1	9	12					
			LD	120% 60 s,	150% 3 s (ir	nverse-time c	haracteristic	s) at surround	ding air					
nd	Overload c	urrent	LD	temperature of 50°C										
Output	rating*3		ND	150% 60 s, 200% 3 s (inverse-time characteristics) at surrounding a temperature of 50°C										
	Rated volta	ge*4		Three-phase 525 to 600 V										
	Regenerat	Brake	transistor	Built-in										
	ive braking	Maxim	um brake torque*5	100%	50%	20%								
	Rated inpu	ed input AC voltage/frequency			e 575 V 60 H	lz								
	Permissible	Permissible AC voltage fluctuation			490 to 632 V 60 Hz									
	Permissible	e freque	ency fluctuation	±5%										
≥	Rated	LD	Without DC reactor	4.3	5.9	8.9	12	16	22					
dr	input	LD	With DC reactor	2.5	3.6	5.6	8.2	11	16					
r si	current	ND	Without DC reactor	3.0	4.6	6.6	10	13	17					
Power supply	(A)*8	ND	With DC reactor	1.7	2.7	4.0	6.1	9.0	12					
Ъ	Power	LD	Without DC reactor	4.3	5.9	8.9	12	16	22					
	supply	LD	With DC reactor	2.5	3.6	5.6	8.2	11	16					
	capacity	ND	Without DC reactor	3.0	4.6	6.6	9.5	13	17					
	(kVA)*6		With DC reactor	1.7	2.7	4.0	6.1	9.0	12					
rote	ective struct	ure (IE	C 60529)	Enclosed type (IP20)										
	ing system			Natural	Forced air									
Approximate mass (kg)				1.9	1.9	1.9	2.4	2.4	2.4					

The motor capacity indicates the maximum capacity of a 4-pole standard motor driven by all of the inverters in parallel connection. *1

*2 The rated output capacity indicated assumes that the output voltage is 575 V. *3

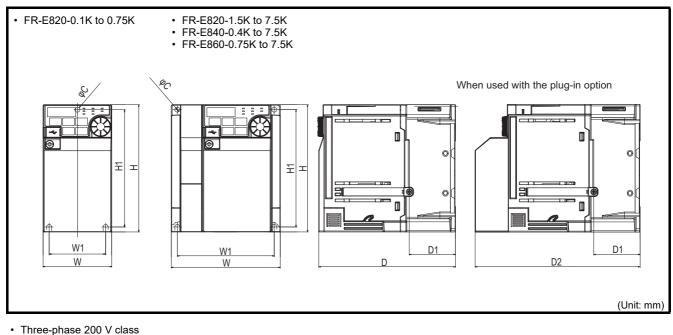
The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load. The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the pulse *4

voltage value of the inverter output side voltage remains unchanged at about $\sqrt{2}$ that of the power supply. The amount of braking torque is the average short-term torque (which varies depending on motor loss) that is generated when a motor decelerates in the shortest time by itself from 60 Hz. It is not continuous regenerative torque. The average deceleration torque becomes lower when a motor decelerates from a frequency higher than *5

the base frequency. The inverter is not equipped with a built-in brake resistor. Use a brake resistor for an operation with large regenerative power. A brake unit can be also used. *6

The power supply capacity varies with the value of the power supply side inverter impedance (including those of the input reactor and cables). Setting 2 kHz or more in **Pr. 72 PWM frequency selection** to perform low acoustic noise operation in the surrounding air temperature exceeding 40°C, the rated output *7 current is the value in parenthesis

*8 The rated input current indicates a value at a rated output voltage. The impedance at the power supply side (including those of the input reactor and cables) affects the rated input current.


• Common specifications

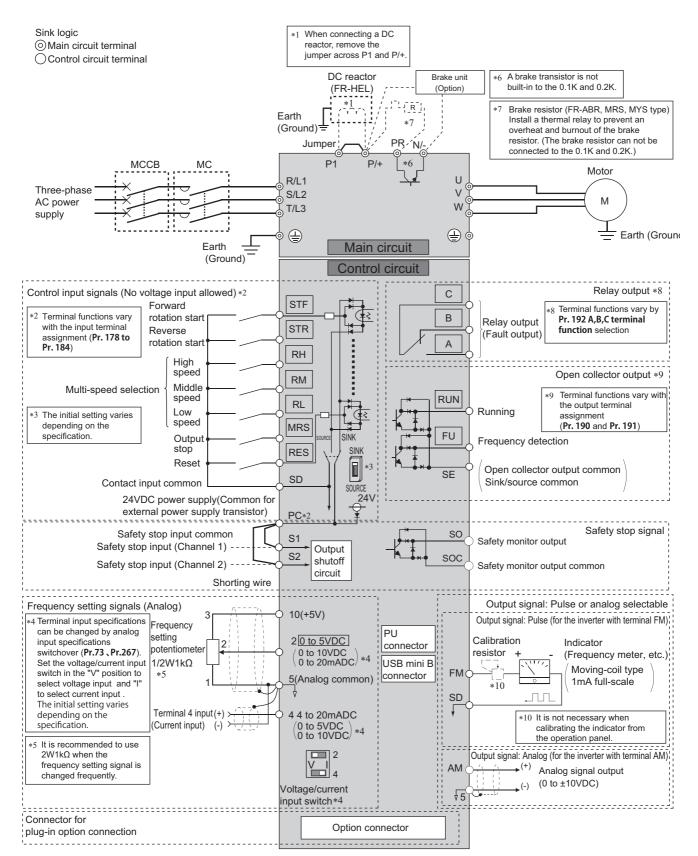
	0 a m tra l ma a th a d	-								
	Control method		Soft-PWM control/high carrier frequency PWM control							
		Induction motor PM motor	Selectable among V/F control, Advanced magnetic flux vector control, and Real sensorless vector control PM sensorless vector control							
	Output		0.2 to 590 Hz (The upper-limit frequency is 400 Hz under Advanced magnetic flux vector control and Real sensorless							
	frequency	Induction motor	vector control.)							
	range	PM motor	0.2 to 400 Hz (not operable at maximum motor frequency or higher)							
	Frequency setting	Analog input	0.015 Hz /60 Hz at 0 to 10 V / 12 bits (terminals 2 and 4) 0.03 Hz /60 Hz at 0 to 5 V / 11 bits or 0 to 20 mA / 11 bits (terminals 2 and 4)							
Suc	resolution	Digital input	0.01 Hz							
ätic	Frequency	Analog input	Within ±0.2% of the max. output frequency (25°C ±10°C)							
	accuracy	Digital input	Within 0.01% of the set output frequency							
e spe	Voltage/frequen	cy characteristics	Base frequency can be set from 0 to 590 Hz. Constant-torque/variable torque pattern can be selected. (available with induction motors only)							
Control specifications	Starting torque	Induction motor	50% 0.5 Hz (Advanced magnetic flux vector control) 00% 0.3 Hz (0.4K to 3.7K), 150% 0.3 Hz (5.5K or more) (Real sensorless vector control)							
		PM motor	50%							
	Torque boost		Manual torque boost (available with induction motors only)							
	Acceleration/de setting	celeration time	0 to 3600 s (acceleration and deceleration can be set individually), linear or S-pattern acceleration/deceleration mode							
	DC injection	Induction motor	Operation frequency (0 to 120 Hz), operation time (0 to 10 s), operation voltage (0 to 30%) can be changed.							
	brake	PM motor	Operation time (0 to 10 s) can be changed, operation voltage (operating current) is fixed.							
	Stall prevention	•	Operation current level can be set (0 to 220% adjustable), whether to use the function or not can be selected.							
	Torque limit leve	1	Torque limit value can be set (0 to 400% variable).							
	Frequency	Analog input	Terminals 2 and 4: 0 to 10 V, 0 to 5 V, 4 to 20 mA (0 to 20 mA) are available.							
	setting signal	Digital input	Input using the operation panel. Four-digit BCD or 16-bit binary (when used with option FR-A8AX E kit)							
	Start signal		orward and reverse rotation or start signal automatic self-holding input (3-wire input) can be selected.							
SL	Input signal (sta Ethernet model	indard model: 7, 2)	Low-speed operation command, Middle-speed operation command, High-speed operation command, Output stop, Forward rotation command, Reverse rotation command, Inverter reset The input signal can be changed using Pr.178 to Pr.189 (input terminal function selection) .							
Operation specifications	Operational fun	ctions	avoidance, frequency jump, rotation display, automatic restart after instantaneous power failure, remote setting, automatic acceleration/deceleration, retry function, carrier frequency selection, fast-response current limit, forward/ reverse rotation prevention, operation mode selection, slip compensation, droop control, speed smoothing control, traverse, auto tuning, applied motor selection, RS-485 communication*1, Ethernet communication*2, PID control,easy dancer control, cooling fan operation selection, stop selection (deceleration stop/coasting), power-failure deceleration stop function, stop-on-contact control, PLC function, life diagnosis, maintenance timer, current average monitor, multiple rating, speed control, torque control, torque limit, safety stop function							
	Copen collect	odel: 2)	Inverter running, Up to frequency, Fault The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection).							
	Analog outp		-10 to +10 V / 12 bits							
	tective/warning ction	Protective functions	Overcurrent trip during acceleration, Overcurrent trip during constant speed, Overcurrent trip during deceleration or stop, Regenerative overvoltage trip during acceleration, Regenerative overvoltage trip during constant speed, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip, Motor overload trip, Heat sink overheat, Undervoltage, Input phase loss, Stall prevention stop, Loss of synchronism detection*3, Upper limit fault detection, Lower limit fault detection, Brake transistor alarm detection, Output side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External thermal relay operation, Option fault, Communication option fault, Parameter storage device fault, PU disconnection, Retry count excess, CPU fault, Abnormal output current detection Inrush current limit circuit fault, USB communication fault, analog input error, Safety circuit fault, Overspeed occurrence*3, Speed deviation excess detection*3, Brake sequence fault*3, PID signal fault, Ethernet communication fault*2, Opposite rotation deceleration fault*3, Internal circuit fault, User definition error by the PLC function, Board combination mismatch							
		Warning functions	Fan alarm, Stall prevention (overcurrent), Stall prevention (overvoltage), Regenerative brake pre-alarm*3, Electronic thermal relay function pre-alarm, PU stop, Maintenance timer warning, Parameter write error, Operation panel lock*3, Password locked, Speed limit indication, Safety stop, Ethernet communication fault*2, Duplicate IP address*2, IP address fault*2, Incorrect parameter setting							
	Surrounding air	temperature	-20°C to +60°C (-10°C to +60°C for the 575 V class) (The rated current must be reduced at a temperature above 50°C.)							
Environment	Ambient humidi	ty	95% RH or less (non-condensing) (With circuit board coating (conforming to IEC 60721-3-3 3C2))							
liror	Storage tempera		90% RH or less (non-condensing) (Without circuit board coating) -40°C to +70°C							
2	Atmosphere	atdi 5 4	Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt, etc.)							
			Inacoro (marour concorre guo, nanimado gao, on misi, duor and unit, etc.)							
ш	Altitude/vibratio	n *5	Maximum 3000 m (Maximum 2000 m for the 575 V class), 5.9 m/s ² or less at 10 to 55 Hz (directions of X, Y, Z axes							

*2 *3 *4 *5

Enabled only for Ethernet models. This protective function is not available in the initial status. Temperature applicable for a short time, e.g. in transit. For the installation at an altitude above 1000 m, consider a 3% reduction in the rated current per 500 m increase in altitude.

Outline Dimensions

Inverter model	W	W1	н	H1	D	D1	D2	С	
FR-E820-0.1K					80.5	10	108.1		
FR-E820-0.2K	68	56			60.5	10	100.1		
FR-E820-0.4K	00	50			112.5	42	140.1		
FR-E820-0.75K			128	-	132.5	42	160.1	5	
FR-E820-1.5K	108	96			135.5	46	163.1		
FR-E820-2.2K	100	50			100.0		103.1		
FR-E820-3.7K	140	128			142.5	52.5	170.1		
FR-E820-5.5K	180	164	260	244	165	71.5	192.6	6	
FR-E820-7.5K	100	104	200	244	103	71.5	192.0	0	


• Three-phase 400 V class

Inverter model	W	W1	н	H1	D	D1	D2	С
FR-E840-0.4K					129.5	40	157.1	
FR-E840-0.75K	108	96	128	118	123.5	40	107.1	
FR-E840-1.5K						46		
FR-E840-2.2K	140	128	150	138	135	43.5	162.6	5
FR-E840-3.7K	140	120	150	150		43.5		
FR-E840-5.5K	220	208	150	138	147	68	174.6	
FR-E840-7.5K	220	200	150	150	147	00	174.0	

Three-phase 575 V class

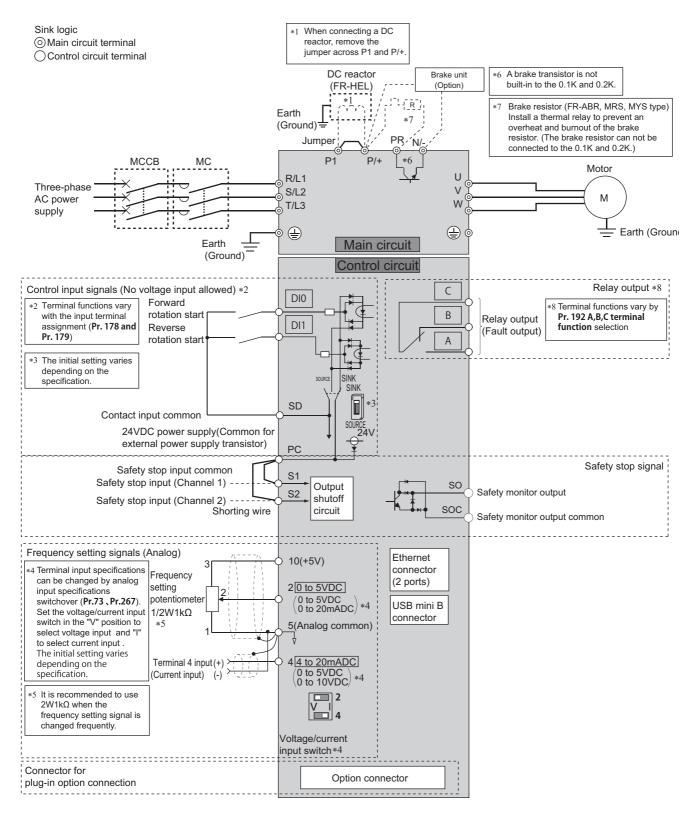
Inverter model	w	W1	н	H1	D	D1	D2	С	
FR-E860-0.75K									
FR-E860-1.5K	140	128	150		135	43.5	162.6	5	
FR-E860-2.2K				138					
FR-E860-3.7K		208						5	
FR-E860-5.5K	220				147	68	174.6		
FR-E860-7.5K									

Terminal Connection Diagram

Terminal Connection Diagram, Terminal Specifications

6

Terminal Specifications

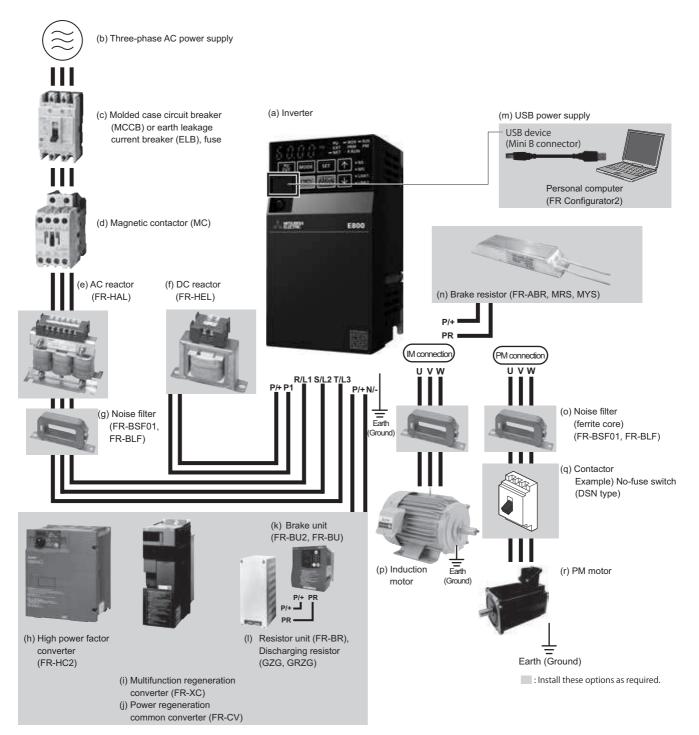

E800

Ту	ре	Terminal Symbol	Terminal Name	Description			
		R/L1, S/L2, T/ L3	AC power input	Connect to the commercial power supply. Do not connect anything to these terr factor converter (FR-HC2) or the multifunction regeneration converter (FR-XC)			
.*	=	U, V, W	Inverter output	Connect a three-phase squirrel-cage motor or PM motor.	, , , , , , , , , , , , , , , , , , ,		
Moin aircuit		P/+, PR	Brake resistor connection	Connect a brake transistor (MRS type, MYS type, FR-ABR) across termina cannot be connected to the 0.1K or 0.2K)			
		P/+, N/-	Brake unit connection	Connect the brake unit (FR-BU2), multifunction regeneration converter (FR-XC), or Remove the jumper across terminals P/+-P1 and connect a DC reactor. W			
2	Ξ	P/+, P1	DC reactor connection	the jumper across terminals P/+ and P1 should not be removed.	nen a De reactor is not connected,		
	1	Ē	Earth (Ground)	For earthing (grounding) the inverter chassis. Must be earthed (grounded).	1		
		STF*1	Forward rotation start	Turn on the STF signal to start forward rotation and turn it off to stop. turned on simultaneously, the stop			
		STR*1	Reverse rotation start	reverse rotation and turn it off to stop.			
		RH, RM, RL*1	Multi-speed selection	Multi-speed can be selected according to the combination of RH, RM and RL signals.	Input resistance: 4.7 kΩ, voltage when contacts are open:		
		MRS*1	Output stop	Turn on the MRS signal (20ms or more) to stop the inverter output. Use to shut off the inverter output when stopping the motor by electromagnetic brake.	21 to 26 VDC, current when contacts are short-circuited: 4 to 6 mADC		
	Contact input	RES*1	Reset	Use to reset alarm output provided when protective circuit is activated. Turn on the RES signal for more than 0.1s, then turn it off. It is possible to set the initial setting to "always enabled". By setting Pr. 75 , reset can be set enabled only at fault occurrence. Recover about 1s after reset is cancelled.			
	tact		Contact input common (sink)	Common terminal for contact input terminal (sink logic) and terminal FM.			
	Con	SD	External transistor common (source)	Connect this terminal to the power supply common terminal of a transistor device, such as a programmable controller, in the source logic to avoid mal	output (open collector output) function by undesirable currents		
			24VDC power supply common	Common output terminal for 24VDC 0.1A power supply (PC terminal). Isola			
input signal			External transistor common (sink)	Connect this terminal to the power supply common terminal of a transistor output (open collector output) device, such as a programmable controller, in the sink logic to avoid malfunction by undesirable currents.			
put s		PC	Safety stop input terminal common	Common terminal for safety stop input terminals.	Power supply voltage range: 22 to 26.5 VDC,		
.⊑			Contact input common	Common terminal for contact input terminal (source logic).	permissible load current: 100 mA		
			(source) 24VDC power supply	Can be used as 24 VDC 0.1 A power supply.	-		
		10	Frequency setting power	Used as power supply when connecting potentiometer for frequency setting (speed setting) from outside of the inverter.	5 VDC ± 0.5 V permissible load current 10 mA		
	ting	2	supply Frequency setting (voltage)	Inputting 0 to 5 VDC (or 0 to 10 VDC) provides the maximum output frequency at 5 V (or 10 V) and makes input and output proportional. Use Pr.73 to switch between input 0 to 5 VDC (initial setting) and 0 to 10 VDC input (The initial setting varies depending on the specification). Set the voltage/ current input switch to the "I" position to select current input (0 to 20 mA).			
	Frequency setting	4	Frequency setting (current)	Inputting 4 to 20 mADC (or 0 to 5 VDC, 0 to 10 VDC) provides the maximum output frequency at 20 mA and makes input and output proportional. This input signal is valid only when the AU signal is 0N (terminal 2 input is invalid). To use the terminal 4 (current input at initial setting), assign "4" to any parameter from Pr.178 to Pr.184 (Input terminal function selection) before turning 0N the AU signal is varies depending on the specification). Use Pr.267 to switch among input 4 to 20 mA (initial setting), 0 to 5 VDC, and 0 to 10 VDC. Set the voltage/current input switch in the "V" position to select voltage input (0 to 5 V / 0 to 10 V).	Permissible maximum voltage 20 VDC Current input: Input resistance 245 Ω ± 5 Ω Maximum permissible current 30 mA.		
		5	Frequency setting common	Common terminal for the frequency setting signals (terminals 2 or 4). Do no	ot earth (ground).		
	Relay	A, B, C	Relay output (fault output)	1 changeover contact output indicates that the inverter fault occurs. Fault: discontinuity across B-C (continuity across A-C), Normal: continuity across B-C (discontinuity across A-C)	Contact capacity 240 VAC 2A (power factor = 0.4) 30 VDC 1A		
	ector	RUN	Inverter running	The output is in LOW state when the inverter output frequency is equal to or higher than the starting frequency (initial value: 0.5 Hz). The output is in HIGH state during stop or DC injection brake operation. *2	Permissible load 24 VDC (Maximum 27 VDC) 0.1 A		
output signal	Open collector	FU		The output is in LOW state when the inverter output frequency is equal to or higher than the preset detection frequency, and is in HIGH state when it is less than the preset detection frequency.*2	(a voltage drop is 3.4 V maximum when the signal is on)		
utpu	ŏ	SE	Open collector output common	Common terminal of terminal RUN and FU.			
Ó	Pulse	FM*3	For meter	Select one e.g. output frequency from monitor items. (Not output during inverter reset.) The output signal is setting.)	Permissible load current 1 mA 1440 pulses/s at 60 Hz		
	Analog	AM*3	Analog voltage output	inverter reset.) The output signal is proportional to the magnitude of the corresponding monitoring item.	Output signal 0 to ± 10 VDC, permissible load current 1 mA (load impedance 10 k Ω or more), resolution 8 bit		
		S1	Safety stop input (Channel 1)	Terminals S1 and S2 are used for the safety stop input signal for the safety relay module. Terminals S1 and S2 are used at the same time (dual	Input resistance 4.7 kΩ		
loanio a	up signal	S2	Safety stop input (with 24 VDC input) (Channel 2)	channel). Inverter output is shutoff by shortening/opening between terminals S1 and SIC, or between S2 and SIC. In the initial status, terminals S1 and S2 are shorted with terminal PC by shorting wires. Terminal SIC is shorted with terminal SD. Remove the shorting wires and connect the safety relay module when using the safety stop function.	Voltage when contacts are open 21 to 26 VDC Current when contacts are short-circuited 4 to 6 mADC		
Cofoty of	oarery stop signar	SO	(opon concertor carpar)	Indicates the safety stop input signal status. Switched to LOW when the status is other than the internal safety circuit failure. Refer to the FR-E800 Instruction Manual (Functional Safety) (BCN- A23488-000) when the signal is switched to HIGH while both terminals S1 and S2 are open. (Please contact your sales representative for the manual.)	Permissible load 24 VDC (maximum 27 VDC) 0.1 A (The voltage drop is 3.4 V at maximum while the signal is ON.)		
		SOC	Safety monitor output terminal common	Common terminal for terminal SO.			
cotion	CallOI	_	PU connector	With the PU connector, RS-485 communication can be made. · Conforming standard: EIA-485 (RS-485) · Transmission format: Multi-drop · Communication speed: 300 to 115200bps · Overall extension: 500m) link		
Communication		_	USB connector*4	USB connection with a personal computer can be established. Setting, mor can be performed using FR Configurator2. · Interface: conforms to USB 1.1 · Transmission Speed: 12 Mbps · Connector: USB mini B connector (receptacle mini B type)	nitoring and testing of the inverter		

*1 *2 *3 *4

Terminal functions can be selected using **Pr.178 to Pr.184 (Input terminal function selection)**. An open collector transistor is ON (conductive) in LOW state. The transistor is OFF (not conductive) in HIGH state. Terminal FM is provided for the FM type inverter. Terminal AM is provided for the AM type inverter. USB bus power connection is available. The maximum SCCR should be 500 mA. A PU connector cannot be used during USB bus power connection.

Terminal Connection Diagram E800-E



Terminal Specifications E800-E

Ту	ре	Terminal Symbol	Terminal Name	Description				
		R/L1, S/L2, T/L3	AC power input	Connect to the commercial power supply. Do not connect anything to power factor converter (FR-HC2) or the multifunction regeneration co regeneration mode.				
		U, V, W	Inverter output	Connect a three-phase squirrel-cage motor or PM motor.				
Main circuit		P/+, PR	Brake resistor connection	Connect a brake transistor (MRS type, MYS type, FR-ABR) across to cannot be connected to the 0.1K or 0.2K)	ermina	als P/+-PR. (The brake resistor		
Main		P/+, N/-	Brake unit connection	Connect the brake unit (FR-BU2), multifunction regeneration convert (FR-HC2).		<i>V</i> C V		
	-	P/+, P1	DC reactor connection	Remove the jumper across terminals P/+-P1 and connect a DC reac the jumper across terminals P/+ and P1 should not be removed.	tor. W	hen a DC reactor is not connected,		
			Earth (Ground)	For earthing (grounding) the inverter chassis. Must be earthed (grou	nded).			
		DI0*1	Forward rotation start	Turn on the DI0 signal to start forward rotation and turn it off to stop. turned on simultaneously, the		Input resistance: 4.7 kΩ, voltage when contacts are open: 21 to 26 VDC,		
		DI1*1	Reverse rotation start	Turn on the DI1 signal to start reverse rotation and turn it off to stop.	Stop	current when contacts are short-circuited: 4 to 6 mADC		
			Contact input common (sink)	Common terminal for contact input terminal (sink logic).				
	put	SD	External transistor common (source)	Connect this terminal to the power supply common terminal of a trans such as a programmable controller, in the source logic to avoid malfu				
	ct in		24 VDC power supply	Common output terminal for 24 VDC 0.1 A power supply (PC termin				
	Contact input		common External transistor	Connect this terminal to the power supply common terminal of a tran	,			
	0		common (sink)	output (open collector output) device, such as a programmable contri in the sink logic to avoid malfunction by undesirable current.	oller,			
_		PC	Safety stop input terminal common	Common terminal for safety stop input terminals.		Power supply voltage range: 22 to 26.5 VDC, permissible load current: 100 mA		
input signal			Contact input common (source)	Common terminal for the contact input terminal (source logic).				
Iput			24 VDC power supply	Can be used as 24 VDC 0.1 A power supply.				
i	=	10	Frequency setting power supply	Used as power supply when connecting potentiometer for frequency setting (speed setting) from outside of the inverter.		5 VDC ± 0.5 V permissible load current 10 mA		
	tting	2	Frequency setting	Inputting 0 to 5 VDC (or 0 to 10 V) provides the maximum output frequence V (10 V) and makes input and output proportional. Use Pr. 73 to switch between input 0 to 5 VDC (initial setting) and 0 to 10 input (The initial setting varies depending on the specification). Set the vocurrent input switch to the "I" position to select current input (0 to 20 mA)	Voltage input:			
	Frequency setting	4	Frequency setting (current)	Inputting 0 to 20 mADC (or 0 to 5 V / 0 to 10 V) provides the maximum of frequency at 20 mA makes input and output proportional. This input sign valid only when the AU signal is on (terminal 2 input is invalid). To use ter 4 (initial setting is current input), set "4" to any of Pr.178, Pr.179 (input ter function selection), and turn AU signal ON (The initial setting varies depe on the specification). Use Pr. 267 to switch from among input 4 to 20 mA (initial setting), 0 to 5 VDC and 0 to 10 VDC. Set the voltage/current input switch in the "V" position to select voltage input (0 to 5 V / 0 to 10 V).	utput al is minal minal nding	20 VDC Current input: Input resistance 245 $\Omega \pm 5 \Omega$ Maximum permissible current 30 mA.		
		5	Frequency setting common	Common terminal for the frequency setting signals (terminals 2 or 4)	not earth (ground).			
output signal	Relay	A, B, C		1 changeover contact output indicates that the inverter fault occurs. Fault: discontinuity across B-C (continuity across A-C), Normal: continuity across B-C (discontinuity across A-C)		Contact capacity 240 VAC 2 A (power factor = 0.4) 30 VDC 1 A		
		S1	Safety stop input (Channel 1)	Terminals S1 and S2 are used for the safety stop input signal for the s relay module. Terminals S1 and S2 are used at the same time (dual	afety	Input resistance 4.7 kΩ Voltage when contacts are open		
ianal	2	S2	Safety stop input (with 24 VDC input) (Channel 2)	channel). Inverter output is shutoff by shortening/opening between terminals S1 and SIC, or between S2 and SIC. In the initial status, terminals S1 and S2 are shorted with terminal PC by shorting wires. Terminal SIC is shorted with terminal SD. Remove the shorting wires connect the safety relay module when using the safety stop function	and	21 to 26 VDC Current when contacts are short-circuited 4 to 6 mADC		
Safaty ston signal		SO	Safety monitor output (open collector output)	Indicates the safety stop input signal status. Switched to LOW when the status is other than the internal safety cir failure. Switched to HIGH during the internal safety circuit failure stat (LOW is when the open collector output transistor is ON (conducted) HIGH is when the transistor is OFF (not conducted).) Refer to the FF E800 Instruction Manual (Functional Safety) (BCN-A23488-000) whe signal is switched to HIGH while both terminals S1 and S2 are open. (Please contact your sales representative for the manual.)	us. t- n the	Permissible load 24 VDC (maximum 27 VDC) 0.1 A (The voltage drop is 3.4 V at maximum while the signal is ON.)		
		SOC	Safety monitor output terminal common	Common terminal for terminal SO.				
Communication		_	Ethernet connector (2-port) *2	Communication can be made via Ethernet. • Category: 100BASE-TX/10BASE-T • Data transmission speed: 100 Mbps (100BASE-TX) / 10 Mbps (100 • Transmission method: Baseband • Maximum segment length: 100m between the hub and the inverter • Number of cascade connection stages: Up to 2 (100BASE-TX) / up • Interface: RJ-45 • Number of interfaces available: 2 • IP version: IPv4	to 4 (10BASE-T)		
Ċ	5		USB connector *3	USB connection with a personal computer can be established. Settir can be performed using FR Configurator2. • Interface: conforms to USB 1.1 • Transmission Speed: 12 Mbps • Connector: USB mini B connector (receptacle mini B type)	g, mo	nitoring and testing of the inverter		

Terminal functions can be selected using **Pr.178**, **Pr.179** (**Input terminal function selection**). Do not connect the parameter unit. The inverter may be damaged. USB bus power connection is available. The maximum SCCR should be 500 mA. *1 *2 *3

Example Connections

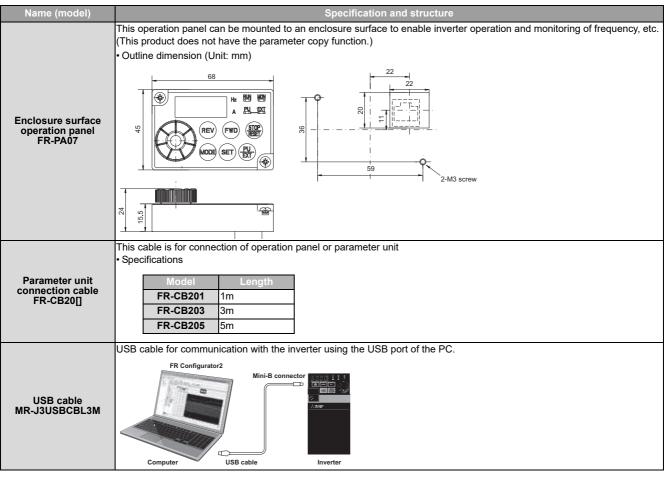
Symbol	Name	Overview						
(a)	Inverter (FR-E800)	The life of the inverter is influenced by the surrounding air temperature. The surrounding air temperature should be as low as possible within the permissible range. This must be noted especially when the inverter is installed in an enclosure. Incorrect wiring may lead to damage of the inverter. The control signal lines must be kept fully away from the main circuit lines to protect them from noise.						
(b)	Three-phase AC power supply	Must be within the permissible power supply specifications of the inverter.						
(c)	Molded case circuit breaker (MCCB), earth leakage circuit breaker (ELB), or fuse	Must be selected carefully since an inrush current flows in the inverter at power ON.						
(d)	Magnetic contactor (MC)	Install this to ensure safety. Do not use this to start and stop the inverter. Doing so will shorten the life of the inverter.						
(e)	AC reactor (FR-HAL)	Install this to suppress harmonics and to improve the power factor. An AC reactor (FR-HAL) (option) is required when installing the inverter near a large power supply system (500 kVA or more). Under such condition, the inverter may be damaged if you do not use a reactor. Select a reactor according to the applied motor capacity.						
(f)	DC reactor (FR-HEL)	Install this to suppress harmonics and to improve the power factor. Select a reactor according to the applied motor capacity. When using a DC reactor, remove the jumper across terminals P/+ and P1 before connecting a DC reactor to the inverter.						
(g)	Noise filter (FR-BLF)	Install this to reduce the electromagnetic noise generated from the inverter.						
(h)	High power factor converter (FR-HC2)	Suppresses the power supply harmonics significantly. Install this as required.						
(i)	Multifunction regeneration converter (FR-XC)							
(j)	Power regeneration common converter (FR- CV)	Provides a large braking capability. Install this as required.						
(k)	Brake unit (FR-BU2)	Allows the inverter to provide the optimal regenerative braking capability. Install						
(I)	Resistor unit (FR-BR), discharge resistor (GZG, GRZG)	this as required.						
(m)	USB connection	Connect between the inverter and a personal computer with a USB (ver. 1.1) cable.						
(n)	Brake resistor (FR-ABR, MRS, MYS)	Increases the braking capability. (0.4K or higher)						
(o)	Noise filter (ferrite core) (FR-BSF01, FR-BLF)	Install this to reduce the electromagnetic noise generated from the inverter. The noise filter is effective in the range from about 0.5 to 5 MHz. A wire should be wound four turns at maximum.						
(p)	Induction motor	Connect a squirrel-cage induction motor.						
(q)	Example) No-fuse switch (DSN type)	Connect this for an application where a PM motor is driven by the load even while the inverter power is OFF. Do not open or close the contactor while the inverter is running (outputting).						
(r)	PM motor	An IPM motor cannot be driven by the commercial power supply.						

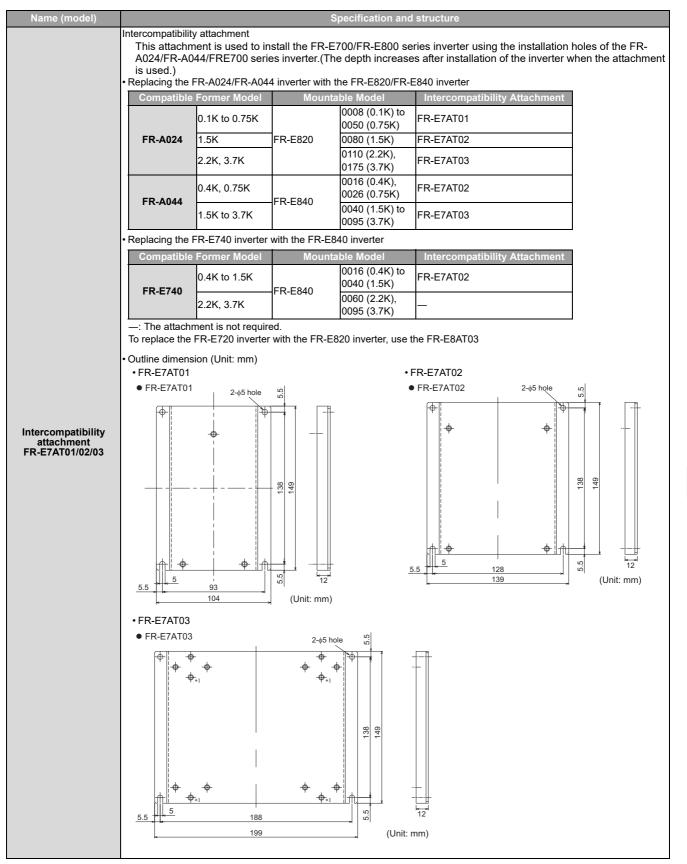
• NOTE

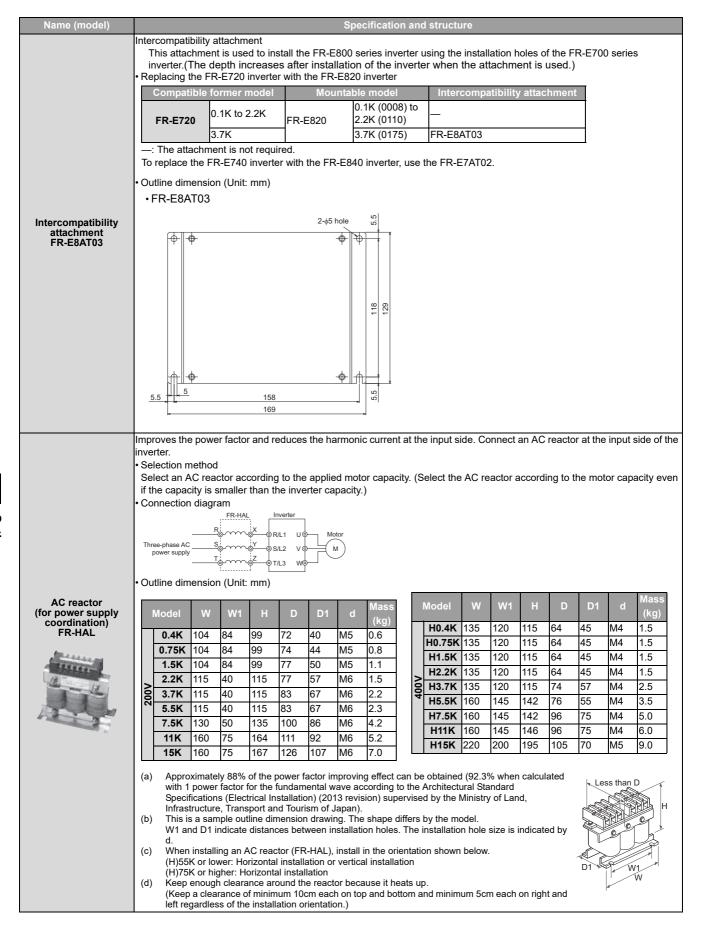
- To prevent an electric shock, always earth (ground) the motor and inverter.
- Do not install a power factor correction capacitor, surge suppressor, or capacitor type filter on the inverter's output side. Doing so will cause the inverter shut off or damage the capacitor or surge suppressor. If any of the above devices is connected, immediately remove it. When installing a molded case circuit breaker on the output side of the inverter, contact the manufacturer of the molded case circuit breaker.
- Electromagnetic wave interference: The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. Install the EMC filter to minimize interference.
- · For details of options and peripheral devices, refer to the respective Instruction Manual.
- A PM motor cannot be driven by the commercial power supply.
 A PM motor is a motor with permanent magnets embedded inside. High voltage is generated at the motor terminals while the motor is running. Before closing the contactor at the output side, make sure that the inverter power is ON and the motor is stopped.

Option List

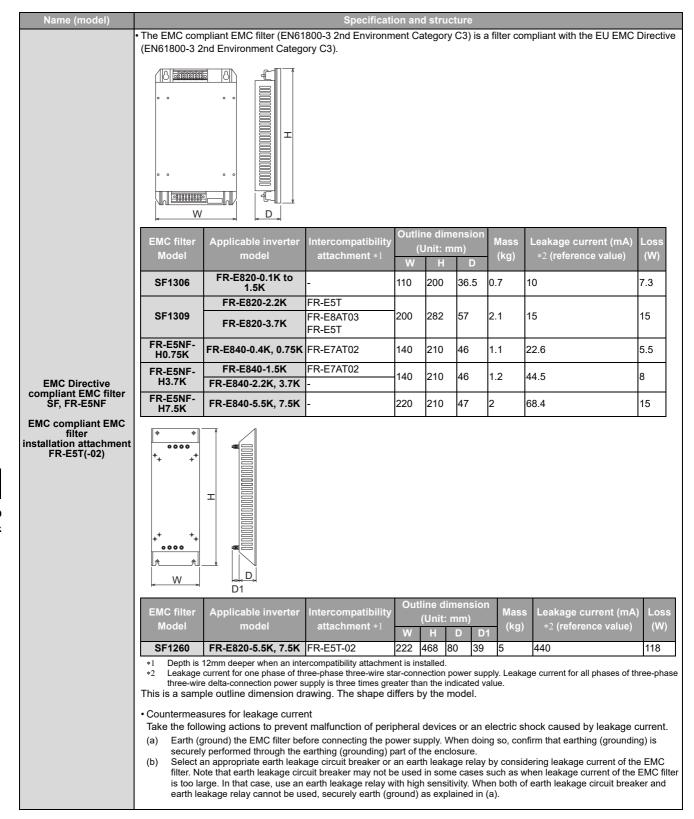
By fitting the following options to the inverter, the inverter is provided with more functions.

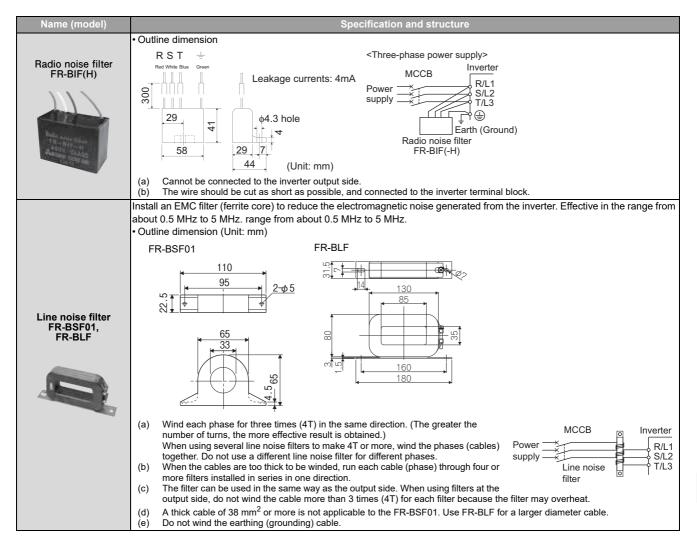

				App	licable	Inverter		
	Name	Туре	Applications		E800-	E800-	Remarks	
		31		E800	E	SCE		
	Vector control Orientation control Encoder feedback control	FR-A8AP E kit	Vector control can be performed for encoder-equipped motors (induction motors). The main spindle can be stopped at a specified position (orientation) in combination with an encoder. The motor speed is sent back and the speed is maintained constant.	0	0	o		
i Type	16-bit digital input	FR-A8AX E kit	•	•	o	Shared among all		
Plug-in Type	Digital output Extension analog output	FR-A8AY E kit	This option provides the inverter with open collector outputs selected from among the standard output signals. This option adds 2 different signals that can be monitored such as the output frequency and output voltage. 20mADC or 10VDC meter can be connected.	•	•	0	models	
	Relay output	FR-A8AR E kit	Output any three output signals available with the inverter as standard from the relay contact terminals.	•	•	0		
	CC-Link communication	FR-A8NC E kit		•	•	0		
	DeviceNet communication	FR-A8ND E kit	This option allows the inverter to be operated or monitored	0	0	0		
	PROFIBUS-DP communication	FR-A8NP E kit	or the parameter setting to be changed from a computer or programmable controller.	0	0	0		
	Liquid crystal display operation panel	FR-LU08 (-01)	Graphical operation panel with liquid crystal display	0	-	-		
	Parameter unit	FR-PU07	Interactive parameter unit with LCD display	0	-	-		
	Parameter unit with battery pack	FR-PU07BB (-L)	This parameter unit enables parameter setting without connecting the inverter to power supply.	0	-	-		
	Enclosure surface operation panel	FR-PA07	This operation panel enables inverter operation and monitoring of frequency, etc. from the enclosure surface	•	-	-		
	Parameter unit connection cable	FR-CB20[]	Cable for connection of operation panel or parameter unit [] indicates a cable length. (1m, 3m, 5m)	•	-	-	Shared among all models	
	Encoder cable Mitsubishi Electric vector control dedicated motor (SFV5RU)	FR-V7CBL[]	Connection cable for the inverter and encoder for Mitsubishi Electric vector control dedicated motor (SF- V5RU). [] indicates a cable length. (5m, 15m, 30m)	0	0	0		
	USB cable	MR-J3USBCBL3M Cable length: 3 m	Amplifier connector Mini B connector (5-pin) A connector	•	•	0		
e type	Intercompatibility attachment	FR-E7AT 01/02/03	For installation of a FR-E800 series inverter to the installation holes of FR-A024/A044 series inverter.	•	•	0	3.7K or lower. The option's model varies with the inverter's model.	
alone	Intercompatibility attachment	FR-E8AT03	For installation of a FR-E700/E800 inverter to the installation holes of FR-A024/A044/E700 inverter.	•	•	0	3.7K	
Stand-alone	DIN rail attachment	FR-UDA 01 to 03	Attachment for installation on DIN rail	0	0	0	3.7K or lower. The option's model varies with the inverter's model.	
	Panel through attachment	FR-E8CN 01 to 06	Using this attachment dissipates the inverter's heat by having the inverter heatsink protrude from the back side of the enclosure.	0	0	0		
	Totally enclosed structure specification attachment (IP40)	FR-E8CV 01 to 04	Installing the attachment to the inverter changes the protective structure of the inverter to the totally enclosed structure (IP40 equivalent as specified by JEM1030).	0	0	0	All capacities.	
	AC reactor	FR-HAL	For harmonic current reduction and inverter input power	•	•	0	The option's model	
	DC reactor	FR-HEL	factor improvement	•	•	0	varies with the	
	EMC Directive compliant noise filter	sf, FR-E5NF, FR-S5NFSA	EMC Directive (EN 61800-3 C3) compliant noise filter	•	•	0	inverter's model.	
	EMC compliant EMC filter installation attachment	FR-A5AT03 FR-AAT02 FR-E5T(-02)	For installation of the inverter to the EMC Directive compliant EMC filter (SF).	•	· · ·		1	
	Radio noise filter	FR-BIF(H)	For radio noise reduction (connect to the input side)	•	•	0		
	Line noise filter	FR-BSF01, FR-BLF	For line noise reduction	•	•	0	All capacities.	

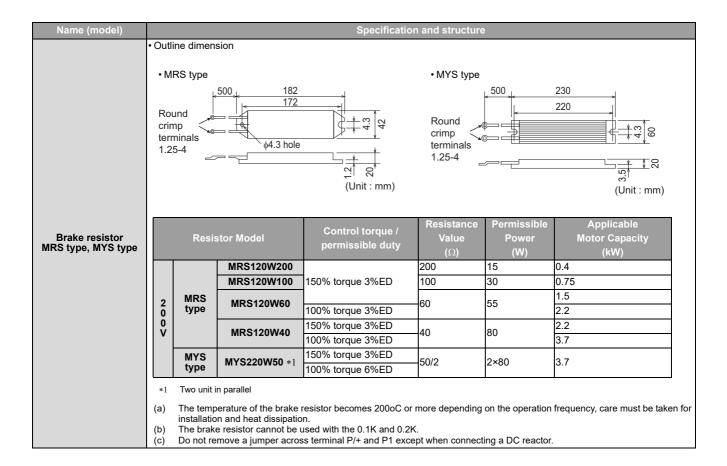

•: Supported \circ : To be supported soon $\ -:$ Not supported


				Арр	licable	Inverter		
	Name	Туре	Applications	E800	E800- E	E800- SCE	Remarks	
	Filterpack	FR-BFP2	Combination of power factor improving DC reactor, common mode choke, and capacitative filter	0	0	0	0.4K or higher of the three-phase power input model. The option's model varies with the inverter's model.	
	Brake resistor		For increasing the regenerative braking capability (permissible duty 3%ED)	•	•	0		
	High-duty brake resistor	FR-ABR	For increasing the regenerative braking capability (permissible duty 10%/6%ED)	•	•	0	0.4K or higher. The option's model	
e type	Brake unit, Resistor unit, Discharging resistor	FR-BU2, FR-BR,	For increasing the braking capability of the inverter (for high-inertia load or negative load) Brake unit, electrical-discharge resistor and resistor unit are used in combination	•	•	0	varies with the inverter's model.	
Stand-alone type	Multifunction regeneration converter Dedicated stand-alone reactor Dedicated box-type reactor	FR-XC FR-XCL FR-XCB	One inverter can handle harmonic suppression and power regeneration. Functions that match the application can be selected by combining the inverter/converter with the dedicated reactor FR-XCB (box-type) or FR-XCL.	•	•	-	According to capacities	
	High power factor converter		The high power factor converter switches the converter section on/off to reshape an input current waveform into a sine wave, greatly suppressing harmonics. (Used in combination with the standard accessory.)	•	•	-	upacines	
	Surge voltage suppression filter	e voltage suppression FR-ASF FR-BMF Filter for suppressing surge voltage on motor					400V: According to capacities 400V: 5.5K or higher According to capacities	
	Pilot generator	QVAH-10	For tracking operation. 70 V / 35 VAC 500 Hz (at 2500 r/ min)	٠	•	0		
	Deviation sensor	YVGC-500WNS	For continuous speed control operation (mechanical deviation detection) Output 90VAC /90°	٠	•	0		
ers	Analog frequency meter (64mm × 60mm)	YM-206NRI 1mA	Dedicated frequency meter (graduated to 130 Hz). Moving-coil type DC ammeter	٠	-	-	Shared among all	
Others	Calibration resistor	RV24YN 10kΩ	For frequency meter calibration. Carbon film type B characteristic	•	•	0	models	
	FR Configurator2 (Inverter setup software)	SW1DND-FRC2	Supports an inverter startup to maintenance.	•	•	0		
	FR Configurator Mobile (Mobile App for Inverters)	-	The app enables operation of inverters using smart phones or tablets.	0	0	0	1	

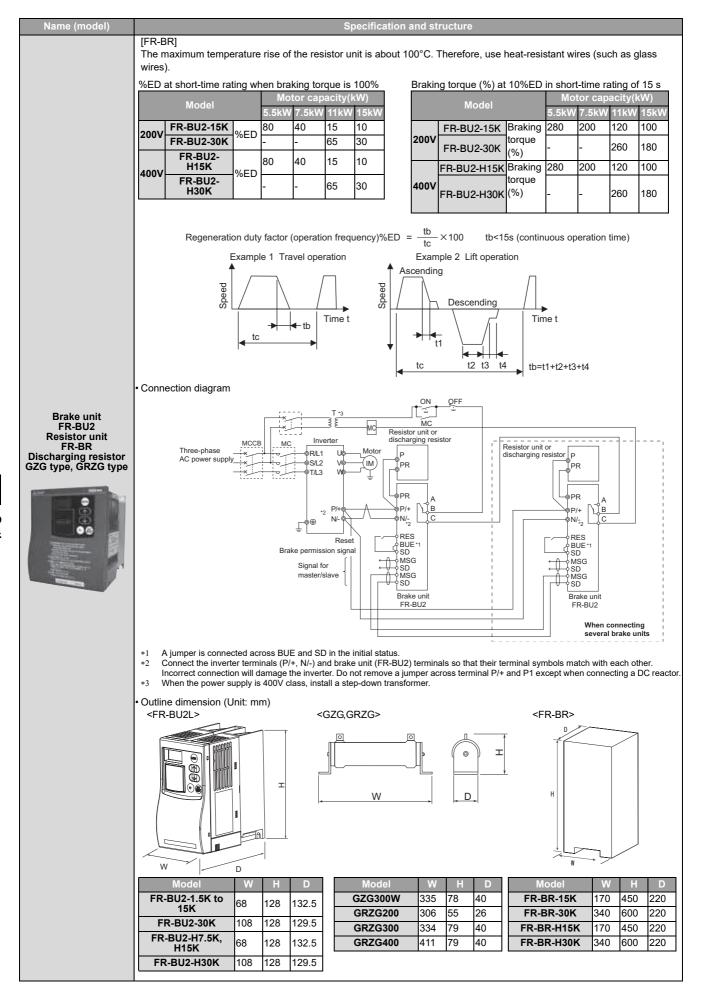
•: Supported \circ : To be supported soon \rightarrow : Not supported


• Stand-alone option

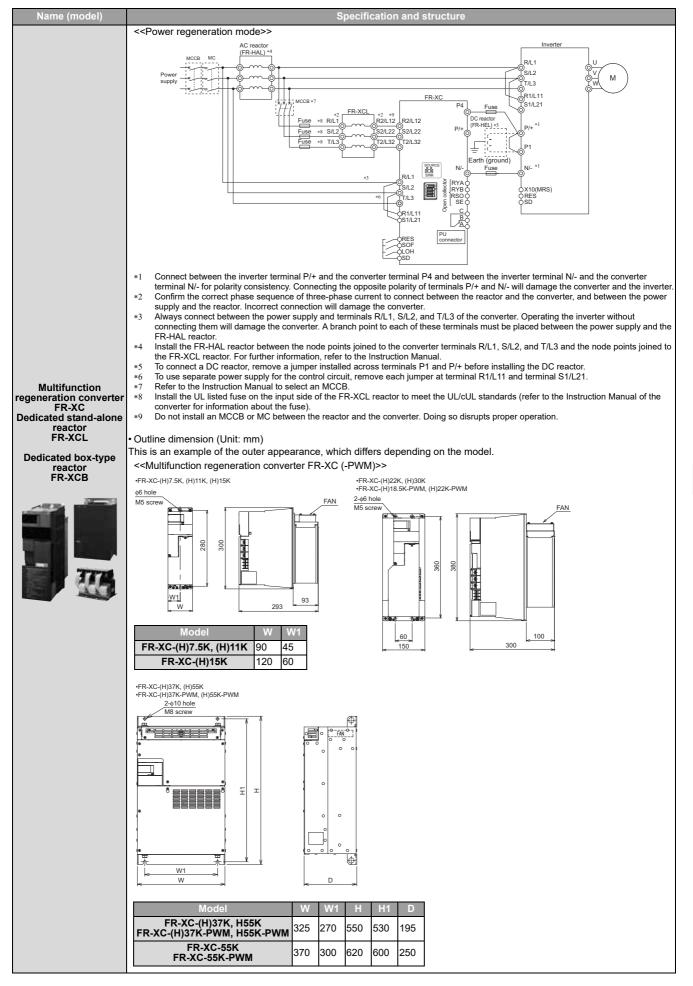


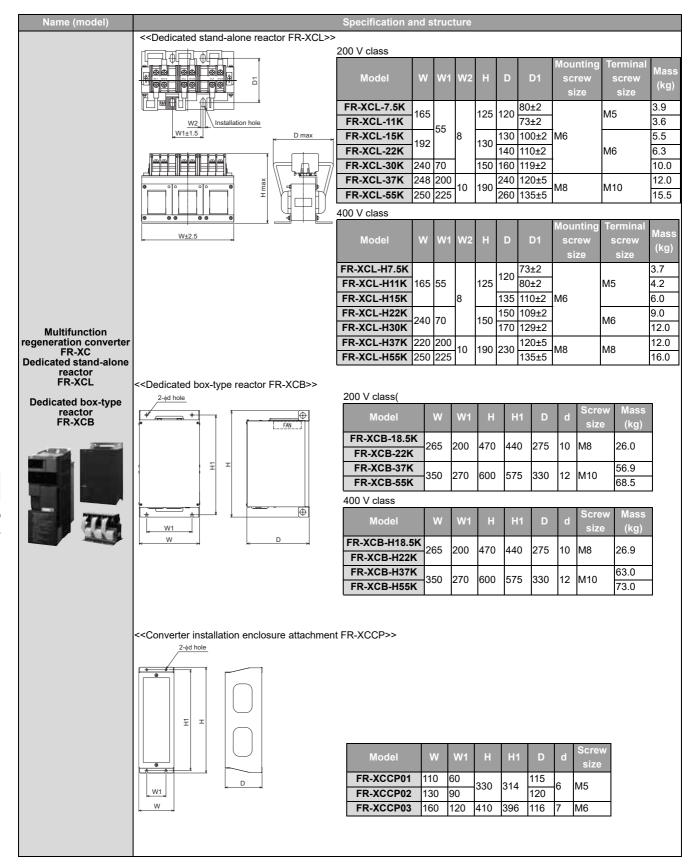


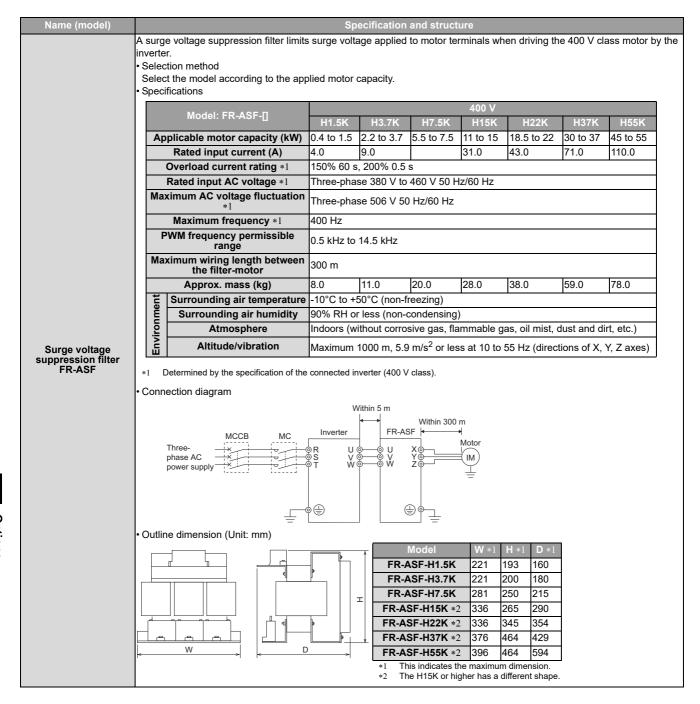
Name (model)						,	Specif	ication a	an	d stru	cture							
DC reactor (for power supply coordination) FR-HEL-(H)[]K	Select Sele is sn • Conn Conn and facto The the in less)	ne dimens Less thar	ad actor acco the invert agram reactor to e the jump mper is lef ment can l n cable be ould be as sion (Unit:	ording to er capac the inve er acros t attache be obtair tween th short as	the ap city.) (R rter tern s termi ed, no p ned. ne reac	plied m efer to p minals P power tor and ble (5m	P1 1 Less	Remacros		a jumper mrminals P1	: accor		EL P P P Th 5m P/+		n cable sho		if the o	capacity
	(a) (b) (c) (d) (e)	Model 0.4K 7 0.75K 8 1.5K 8 2.2K 8 3.7K 7 5.5K 7 7.5K 8 11K 1 15K 1 The size of page 90) Approximation for the Ministic This is a structure with the Ministic This is a structure with the Ministic H)55K or (H)75K or (H)75K or (H)75K or (H)75K or (Keep enou (Keep a classification of the theory of theory of theory of theory of theor	W W 70 60 85 74 85 74 85 74 85 74 77 55 86 60 105 64 105 64 ately 93% of tal wave ac ry of Land, sample outil 11 indicate talling a DC lower: Hor wigh clearance of higher: Hc ugh clearance of n orientation	71 81 81 92 92 113 133 133 133 st used s of the por coording Infrastru ine dime distances c reactor izontal in rizontal in nce arou f minimul	wer fact to the A octure, T nsion d s betwe (FR-HE ostallation installation	D1 	d M4 M4 M4 M4 M4 M4 M6 M6 I to or I to or I to or I to or I tra ald allation all in the tertical in	Mass (kg) 0.4 0.5 0.8 0.9 1.5 1.9 2.5 3.3 4.1 2.5 3.3 4.1 2.5 3.3 4.1 2.5 3.3 4.1 2.5 3.3 4.1 2.5 3.3 4.1 2.5 3.3 4.1 2.5 5 3.3 4.1 2.5 5 3.3 4.1 2.5 5 5 5 6 7 7 7 7 8 7 7 7 7 8 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 8 7 8 8 7 8	n t bers ne ttio	Moco Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi	0.4K 0.75K 1.5K 2.2K 3.7K 5.5K 7.5K 111K 15K med (9 mode ation h vn belo	66 76 86 96 96 105 105 105 4.4% v lectricz I. ole size	vhen ca al Instal e is ind	alculate lation) icated	d with (2010 r by d.	1 powe	er factor 1) super	for the vised by

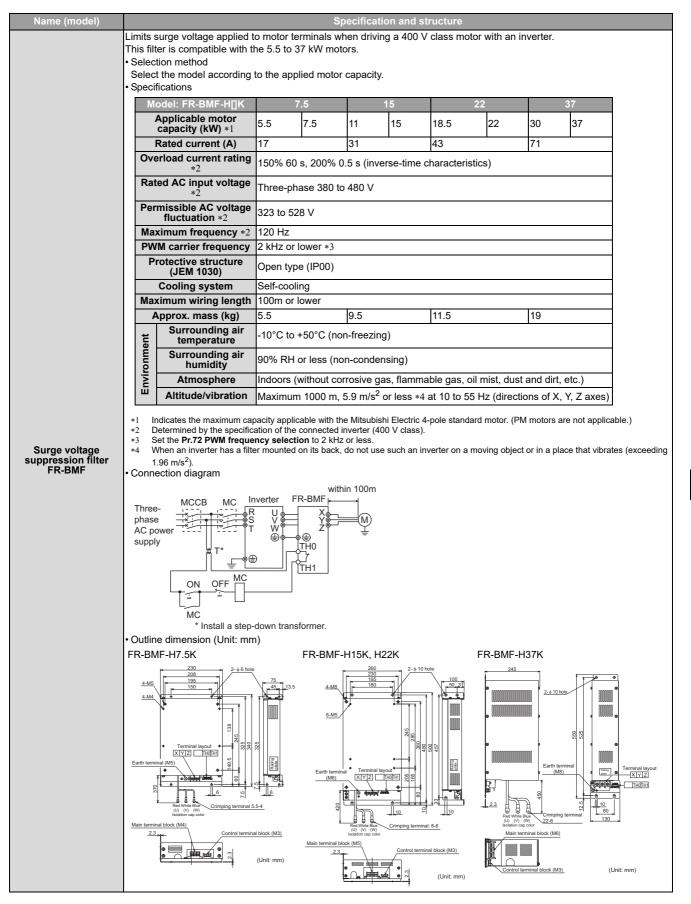

_ comg	the option,	the inverter may	conform t	o the Jap	anese gu					551011.	
		ilable for three-ph	nase 200\	//400V cla	ass invert	ers with 0	.4K to 15	K capacit	у.		
 Specifi Three 		0V pow input mo	dol								
• Thee		-BFP2-[]K	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
Per		nverter output	2.5	4.2	7	10	16.5	23.8	31.8	45	58
A		te mass (kg)	1.3	1.4	2.0	2.2	2.8	3.8	4.5	6.7	7.0
	••	proving reactor		DC react			factor un	der 100%		1% *2)	
	- C14	Common mode choke				input side			1080 (04.	- 70 *3)	
NO	ise filter	Capacitive filter	r About 4r	nA of car	acitor lea	kade curr	ent *2				
Prote		cture (JEM1030)									
• Three	e-phase 400	V power input mod	de	. ,							
	Model FR-		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
		verter output	1.2	2.2	3.7	5	8.1	12	16.3	23	29.5
A		e mass (kg)	1.6	1.7	1.9	2.3	2.6	4.5	5.0	7.0	8.2
	<u> </u>		-	DC reacto			<u> </u>	1 -	1	1 -	1
Powe	r factor im	proving reactor					actor und	ler 100%	load (94.4	4% *3)	
No	ise filter	Common mode choke	Install a f	ferrite cor	e on the i	nput side.					
NO	se miler	Capacitive filter	About 8n	nA of cap	acitor lea	kage curr	ent *2				
Prote	ctive struc	ture (JEM1030)	Open typ	e (IP00)							
		for public constructi				luency pow	er factor a	ection powe ccording to stry of Land	the Year 2		
• Outline	Tourism in Ja e dimensior 3FP2-0.4K, 0.7 3FP2-H0.4K, F	for public constructi	ons (electri :> <, H3.7K>		on works),	uency pow published b <fr-bfp2-{< th=""><th>er factor a by the Minis 5.5K, 7.5K, 15.5K, H7.5</th><th>ccording to stry of Land</th><th>the Year 2 d, Infrastruc</th><th></th><th></th></fr-bfp2-{<>	er factor a by the Minis 5.5K, 7.5K, 15.5K, H7.5	ccording to stry of Land	the Year 2 d, Infrastruc		
• Outline	Tourism in Ja e dimension SFP2-0.4K, 0. SFP2-H0.4K, 1 Rating plate	for public constructi pan. n (Unit: mm) 75K, 1.5K, 2.2K, 3.7K 10.75K, H1.5K, H2.2F - - - - - - - - - - - - -	ons (electri :> <, H3.7K>	1.5 hole	on works),	<pre>selection pow published b set the selection of the selection set the selection of the selection of the selection set the selection of the</pre>	5.5K, 7.5K, 15.5K, 7.5K, 15.5K, H7.5 2.CC T T T T T T T T T T T T T T T T T T	ccording to stry of Land 11K, 15K> iK, H11K, H* hole 포 도	the Year 2 , Infrastructure 15K>	2-fC hole	sport and
• Outline <fr-e <fr-e< td=""><th>Tourism in Ja e dimension SFP2-0.4K, 0.7 SFP2-H0.4K, F Rating plate </th><th>for public construction for public construction (Unit: mm) 75K, 1.5K, 2.2K, 3.7K 10.75K, 11.5K, 12.2F </th><td>ons (electri , H3.7K> 244 - - - - - - - - - - - - -</td><td>L.5 hole L.5 ho</td><td>D2 15 12.5 12.5 12.5</td><td>Capac</td><td>er factor a y the Minis 5.5K, 7.5K, 15.5K, H.7.5 </td><td>ccording to stry of Land 11K, 15K> iK, H11K, H* iNole ⊥ <tr< td=""><td>the Year 2 a, Infrastruct 15K> Isk Isk</td><td>2-fC hole</td><td>C1 4.5 5 6 5 6 6</td></tr<></td></fr-e<></fr-e 	Tourism in Ja e dimension SFP2-0.4K, 0.7 SFP2-H0.4K, F Rating plate 	for public construction for public construction (Unit: mm) 75K, 1.5K, 2.2K, 3.7K 10.75K, 11.5K, 12.2F 	ons (electri , H3.7K> 244 - - - - - - - - - - - - -	L.5 hole L.5 ho	D2 15 12.5 12.5 12.5	Capac	er factor a y the Minis 5.5K, 7.5K, 15.5K, H.7.5 	ccording to stry of Land 11K, 15K> iK, H11K, H* iNole ⊥ <tr< td=""><td>the Year 2 a, Infrastruct 15K> Isk Isk</td><td>2-fC hole</td><td>C1 4.5 5 6 5 6 6</td></tr<>	the Year 2 a, Infrastruct 15K> Isk	2-fC hole	C1 4.5 5 6 5 6 6
• Outline <fr-e <fr-e </fr-e </fr-e 	Tourism in Ja dimension SEP2-0.4K, 0.7 SEP2-H0.4K, H Rating plate D.4K, 0.75K 1.5K, 2.2K 3.7K 4K, H0.75F 1.5K, H2.2P H3.7K	for public construction for public construction (Unit: mm) 75K, 1.5K, 2.2K, 3.7K 10.75K, 11.5K, 12.2F 	 A. 17K> A. 17K A. 17	L5 hole L5	D2 15 12.5	Capac Capac Capac Capac Capac Capac Capac Capac Capac Capac	ty the Minis a.5K, 7.5K, t5.5K, H7.5K a.6,5K, H7.5K, H7.5K a.6,5K, H7.5K, H7.5K a.6,5K, H7.5K,	ccording to stry of Land 11K, 15K> iK, H11K, H* iNole ⊥ <tr< td=""><td>the Year 2 a, Infrastruct 15K> Infrastruct 15K> Infrastruct Infrastruct</td><td>2-fC hole 2-fC hole 2-fC hole 2-fC hole 145 195 220 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>C1 4.5 6 6 6 4.5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td></tr<>	the Year 2 a, Infrastruct 15K> Infrastruct 15K> Infrastruct Infrastruct	2-fC hole 2-fC hole 2-fC hole 2-fC hole 145 195 220 0 0 0 0 0 0 0 0 0 0 0 0 0	C1 4.5 6 6 6 4.5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Name (model)						Spec	ificat	ion and struc	ture	
	• Oı	utline dimension (L	Init: mm)							
	_		Demoiseible	01	1			Desistance	A	
		Brake Resistor	Permissible Brake	Out	line L)imen	sion	Resistance Value	Approx. Mass	
		Model	Duty	w	W1	D	н	value (Ω)	(kg)	
		FR-ABR-0.4K	10%	140	500	40	21	200	0.2	4
		FR-ABR-0.75K	10%	215	500	40	21	100	0.4	-
			10%							-
	2	FR-ABR-2.2K *1	10%	240	500	50	26	60	0.5	
	0	FR-ABR-3.7K	10%	215	500	61	33	40	0.8	1
	v	FR-ABR-5.5K	10%	335	500	61	33	25	1.3	1
		FR-ABR-7.5K	10%	400	500	80	40	20	2.2	
		FR-ABR-11K	6%	400	700	100	50	13	3.5]
		FR-ABR-15K *2	6%	300	700	100	50	18(×1/2)	2.4(×2)	
	_									
		Brake Resistor	Permissible	Out	line D	Dimen	sion	Resistance	Approx.	
		Model	Brake Duty	W	W1	D	н	Value (Ω)	Mass (kg)	
High-duty brake resistor		FR-ABR-H0.4K	10%	115	500	40	21		(kg) 0.2	
FR-ABR		FR-ABR-H0.75K		140	500	40	21		0.2	
			10%	215	500	40	21		0.4	~ D <
un la	4		10%	240	500	50	26		0.5	H
and the	0	FR-ABR-H3.7K	10%	215	500	61	33		0.8	
~	v	FR-ABR-H5.5K	10%	335	500	61	33	110	1.3	W1+20
		FR-ABR-H7.5K	10%	400	500	80	40	75	2.2	
		FR-ABR-H11K	6%	400	700	100	50	52	3.2	
		FR-ABR-H15K *3	6%	300	700	100	50	18(×2)	2.4(×2)	
	*: (a (t (o	 For the 15K brake For the 15K brake (same resistor as a) The regenerative The temperature for installation a MYS type resistor 	e resistor, configu e resistor, configu the 200V class ve brake duty su re of the brake r and heat dissipa tor can be also stor cannot be u	ure so 15K) etting resisto ation. used. used w	should br beco Note vith the	vo 18Ω d be le omes that th e 0.1K	e resist ess tha 300°C ne per and (ors are connect an permissible c or more depe missible brake 0.2K.	ed in series brake duty nding on th duty.	S. FR-ABR-15K is indicated on the resistor. v in the table above. ne operation frequency, care must be taken

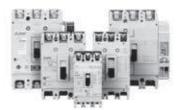

Brake unit FR-BU2 Resistor unit FR-BR Discharging resistor ZG type, GRZG type IT T Selection I Select	des a braking ca verters without b required braking cification ke unit] 7.5K 15K 3 Applicable moto Connected brak Multiple (paralle Approximate m charging resiston del: GRZG type *1	uilt-in bra g torque. 30K-[] or capaci ke resista el) drivin nass (kg	ity or	1.51 The ap GRZG Max. 1 conne	K Spplicable Stype, F	3.7K e capacity R-BR, M	f disch 200V 7.5K / differ	15K narging resister 15K rs by the brak	ors are availa 30K	ble. Make a s 4 H7.5K H	election ac		
b to the re • Specifi (Brake Ap Co Mu A (Discha Mode I Com Mode I Com Mode I Resistor unit FR-BU2 Resistor unit FR-BU2	e required brakin cification ke unit] 7.5K 15K 3 Applicable moto Connected brak Multiple (paralle Approximate n charging resistor del: GRZG type	g torque. 30K-[] or capaci ke resisto el) drivin mass (kg	ity or Ig	1.5 The ap GRZG Max. 1 conne	K pplicable S type, F 10 units	3.7K e capacity FR-BR, M	200V 7.5K / differ	15K rs by the brak	30K	4 H7.5K H	00V		
Brake unit FR-BU2 Resistor unit FR-BR Discharging resistor ZG type, GRZG type	ke unit] 7.5K 15K 3 Applicable moto Connected brak Multiple (paralle Approximate n charging resistor del: GRZG type	or capaci ke resiste el) drivin nass (kg	or Ig	The ap GRZG Max. 1 conne	pplicabl 6 type, F 10 units	3.7K e capacity R-BR, MT	7.5K / differ	rs by the brak		H7.5K H			
Brake unit FR-BU2 Resistor unit FR-BR bischarging resistor ZG type, GRZG type	7.5K 15K 3 Applicable moto Connected brai Multiple (paralle Approximate n charging resistor del: GRZG type	or capaci ke resiste el) drivin nass (kg	or Ig	The ap GRZG Max. 1 conne	pplicabl 6 type, F 10 units	3.7K e capacity R-BR, MT	7.5K / differ	rs by the brak		H7.5K H			
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor ZG type, GRZG type Image: Strate of the second se	Applicable moto Connected brai Multiple (paralle Approximate n charging resistor del: GRZG type	or capaci ke resiste el) drivin nass (kg	or Ig	The ap GRZG Max. 1 conne	pplicabl 6 type, F 10 units	3.7K e capacity R-BR, MT	7.5K / differ	rs by the brak		H7.5K H			
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor ZG type, GRZG type Image: Strate of the st	Connected brai Multiple (paralle Approximate r charging resistor del: GRZG type	ke resisto el) drivin nass (kg	or Ig	The ap GRZG Max. 1 conne	pplicabl 6 type, F 10 units	e capacity R-BR, M	/ differ	rs by the brak				H30K	
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor ZG type, GRZG type Image: Strate of the st	Connected brai Multiple (paralle Approximate r charging resistor del: GRZG type	ke resisto el) drivin nass (kg	or Ig	GRZG Max. 1 conne	6 type, F 10 units	R-BR, M		,	0 1	d the operation			
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor ZG type, GRZG type	Approximate n charging resistor del: GRZG type	nass (kg	g	conne		(However	RZG type, FR-BR, MT-BR5 (For the combination, refer to the table below.)						
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor ZG type, GRZG type	charging resistor del: GRZG type)	0 0			r, the t	torque is limite	ed by the per	missible curre	ent of the		
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor 2G type, GRZG type	del: GRZG type	r]		0.9	0.9	0.9	9	0.9	1.4 0.9	0.9	1.4		
Brake unit FR-BU2 Resistor unit FR-BR scharging resistor Compension Compension Compension Compension Appr *1 Tr • Combi Compension Appr *1 Tr • Combi Compension *1 Tr • Combi Compension *1 Tr • Combi *1 Tr • Combi *1 Tr • Combi *1 Tr													
Brake unit FR-BU2 Resistor unit FR-BR scharging resistor Compension Compension Compension Compension Appr *1 Tr • Combi Compension Appr *1 Tr • Combi Compension *1 Tr • Combi Compension *1 Tr • Combi *1 Tr • Combi *1 Tr • Combi *1 Tr		-		-		0V				400V			
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor 2G type, GRZG type		GZG30			(G200-	GRZG3		GRZG400-	GRZG200-	GRZG300			
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor 2G type, GRZG type	Number of	50Ω (1	unit)	10 <u>0</u> 2 (. 3 in se	3 units) aries	5Ω (4 ur 4 in serie		2Ω (6 units) 6 in series	10Ω (3 units 6 in series	 5Ω (4 units 8 in series 	s) 2Ω (6 ι 12 in se		
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor CG type, GRZG type	nnectable units	1 unit		(1 set)		(1 set)		(1 set)	(2 sets)	(2 sets)	(2 sets)		
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor CG type, GRZG type	Discharging istor combined esistance (Ω)	50		30		20		12	60	40	24		
Brake unit FR-BU2 Resistor unit FR-BR ischarging resistor ZG type, GRZG type	Continuous operation permissible power (W)	100		300		600		1200	600	1200	2400		
FR-BU2 Resistor unit FR-BR ischarging resistor ZG type, GRZG type *1 Th • Combi *1 Th • Combi *1 Th • Combi *1 Th • Combi *1 Th • Selecti [GRZG The m make s Do not Other	sistor unit]												
Resistor unit FR-BR ischarging resistor 2G type, GRZG type	Model: FR-BR	-[]	15K	200 V 30K	55K	400 V H15K							
ischarging resistor 2G type, GRZG type)ischarging res	istor o		4	2	32							
<pre>so type, or 20 type perm Appr *1 Tr Combi Combi Appr *1 Tr Combi Appr *1 Tr Select [GRZ0] The m make 3 Do not Otherv </pre>	nbined resistar ontinuous oper	ration											
*1 Tr • Combi • Comb	ermissible powe	er (W) ⁹	90	1990	3910	990							
Combined in the second se	proximate mas	ss (kg) 1	5	30	70	15							
Image: state stat	The 1 set contains	s the numb	er of u	inits in t	he paren	theses. For	r the 40	00 V class, 2 se	ts are required.				
A007 A007 *1 Th • Selecti [GRZ G The mi make s Do not Otherw	nbination betwee	en the bra	ike un	nit and	the resi	stor unit							
1 Th Selecti [GRZ07 The m make s Do not Otherw				¥ (esistor mode	unit model				
*1 Tr • Selecti [GRZ0 The m make s Do not Otherv	Brake unit mo	odel				GR	ZG ty	G type		le FR-BI			
*1 Tr • Selecti [GRZ0 The m make s Do not Otherv					Model			Number of connecta		F F	-K-BK		
*1 Tr • Selecti [GRZ0 The m make s Do not Otherv	FR-BU2-1	1.5K	GZG	300W	/-50Ω (1	unit)	1	units 1 unit		-			
*1 Tr • Selecti [GRZ0 The m make s Do not Otherv	FR-BU2-3				-10Ω (3	/		in series (1 s	et)	-			
*1 Tr • Selecti [GRZ0 The m make s Do not Otherv	FR-BU2-7	7.5K	GRZ	G 300-	-5Ω (4 ι	units)	4	in series (1 s	et)	-			
*1 Tr • Selecti [GRZ0 The m Do not Otherw	FR-BU2-	15K	GRZ	G 400-	-2Ω (6 ι	units)	6	6 in series (1 s	et)	FR-BR-15K	(
*1 Tr • Selecti [GRZ0 The m Do not Otherw	FR-BU2-3		-				-			FR-BR-30K	ζ		
*1 Tr • Selecti [GRZ0 The m Do not Otherw	FR-BU2-H				-10Ω (3			3 in series (2 s	,	-			
*1 Th • Selecti [GRZ0 The m Do not Otherw					-5Ω (4 ι	,	8	3 in series (2 s	ets)	FR-BR-H15K			
• Selecti [GRZ0 The m make s Do not Otherv	FR-BU2-H15K GRZ				-2Ω (6 ι	units)	1	2 in series (2	sets)	FR-BR-H30K			
[GRZG The m make s Do not Otherw	FR-BU2-H30K GRZG 400-2Ω (6 units) 12 in series (2 sets) FR-BR-H30K												
[GRZG The m make s Do not Otherw		*1 The 1 set contains the number of units in the parentheses. For the 400 V class, 2 sets are required.											
The m make s Do not Otherv	The 1 set contains	s une numb											
makes Do not Otherv	The 1 set contains	s une numb					s is ab	out 200°C. Us	se heat-resist	ant wires to p	erform wir	ina. a	
Otherv	The 1 set contains action method ZG type]		se of t	the disc	charging	a resisiors		0					
	The 1 set contains ection method ZG type] maximum tempo	erature ris				•					nly turne (
Bo	The 1 set contains action method ZG type]	erature ris will not c	ome i	in conta	act with	resistors.		or about 10 m	inutes after th	ie power sup	piy turns c)FF.	
	The 1 set contains ection method ZG type] maximum tempo e sure that they	erature ris will not c charging	ome i resist	in conta tor whil	act with le the po	resistors.		or about 10 m	inutes after th	ie power sup	piy turns c)FF.	
	The 1 set contains ection method ZG type] maximum tempe e sure that they not touch the dis erwise you may Power	erature ris will not c charging get an ele	ome i resist	in conta tor whil	act with le the po	resistors.	N or fo					DFF.	
	The 1 set contains ection method ZG type] maximum tempe e sure that they not touch the dis erwise you may ower upply Braki	erature ris will not c charging get an ele	ome i resist ectric	in conta tor whil shock	act with le the po	resistors. ower is Of	N or fo	lotor capacit	y (kW)				
	The 1 set contains ection method ZG type] maximum tempe te sure that they not touch the dis erwise you may g	erature ris will not c charging get an ele	ome i resist ectric	in conta tor whil	act with le the po	resistors.	N or fo					15	
20	The 1 set contains ection method ZG type] maximum tempe e sure that they not touch the dis erwise you may ower upply oltage 50% 3	erature ris will not c charging get an ele ng ue0.	ome i resist ectric	in conta tor whil shock 0.75	act with le the po	resistors. ower is Of	N or fo	lotor capacit	y (kW)	7.5			
	The 1 set contains ection method ZG type] maximum tempe te sure that they not touch the dis erwise you may g ower upply oltage	erature ris will not c charging get an ele ng ue 0. 30s FR-	ome i resist ectric	in conta tor whil shock 0.75 1.5K	act with le the po	resistors. ower is Of 1.5	N or fo M 2 FR-	lotor capacity	y (kW) 5.5	7.5 5K FR-E	11	15	
40	The 1 set contains ection method ZG type] maximum tempe e sure that they not touch the dis erwise you may g ower upply oltage 2000	erature ris will not c charging get an ele ng ue 0. 30s FR-1 30s FR-1	ome i resist ectric .4 BU2- ⁻	in conta tor whil shock 0.75 1.5K	act with le the po	resistors. ower is Of 1.5	N or fo	lotor capacity 2.2 3.7 BU2-3.7K	y (kW) 5.5 FR-BU2-7.	7.5 5K FR-E 5K 2×FF	11 3U2-15K	15	
	The 1 set contains ection method ZG type] maximum temper e sure that they not touch the dis erwise you may power upply oltage 200V 50% 3 100%	erature ris will not c charging get an ele ng ue 0. 30s FR-1 30s FR-1 30s -*2	ome i resist ectric .4 BU2- ⁻	in conta tor whil shock 0.75 1.5K	act with le the po	resistors. ower is Of 1.5	N or for M 2 FR- FR- FR-	lotor capacity 2.2 3.7 BU2-3.7K BU2-7.5K	y (kW) 5.5 FR-BU2-7.	7.5 5K FR-E 5K 2×FF FR-E	11 3U2-15K R-BU2-15k	15 (*1	


The number next to the model name indicates the number of connectable units in parallel. The inverter for 400V class 1.5K or lower cannot be used in combination with a brake unit. To use in combination with a brake unit, use the inverter of 2.2K or higher. *1 *2


Name (model)			Sp	ecificat	ion an	d stru	cture							
	One inverter can handle harmonic suppression and power regeneration. Functions that match the application can be selected by combining the inverter/converter with the dedicated reactor FR-XCB													
								r/conv	erter w	ith the	dedica	ated re	actor I	FR-XCE
	(boxtype) or FR-X	CL.				-								
	 Combination 													
	< <combination< th=""><td>matrix of FR-></td><td>CL and FR-XC(-P</td><td>WM)>></td><td></td><td><<com< td=""><td>binatio</td><td>on mat</td><td>rix of F</td><td>R-XC</td><td>CP and</td><td>ל-RF</td><td>C(-PV</td><td><<(MV</td></com<></td></combination<>	matrix of FR->	CL and FR-XC(-P	WM)>>		< <com< td=""><td>binatio</td><td>on mat</td><td>rix of F</td><td>R-XC</td><td>CP and</td><td>ל-RF</td><td>C(-PV</td><td><<(MV</td></com<>	binatio	on mat	rix of F	R-XC	CP and	ל-RF	C(-PV	<<(MV
	Dedicated stan	dalone Mult	function regeneration	ation		0			-41		Multifu	unctio	n	
	reactor		converter				/erter				regen	eratio	n	
	FR-XCL-[1 FR-X	C-[] FR-XC-[]-PV	/M *1		attachi	ment f	or end	closur	e	con	/erter		
	7.5K	7.5K	_		-		FR-X	CPI 1				(C-[1		
	11K	11K	-		- 5	_			_	(H) -	7.5K			
	-	15K					0	1		· · /				
	15K		-		_					• •	I) 11K			
	22K	22K	18.5K		_		0	2		· · /	(H) 15K			
	30K	30K	22K						(H) 2					
	37K	37K	37K				0	3		(H) (
	55K	55K	55K				-	-		(H) ⁻	18.5K-	PWM		
	H7.5K	H7.5k	-							(H) 2	22K-P	νM		
	H11K	H11K	-			< <com< th=""><th>binatio</th><th>on mat</th><th>rix of F</th><th>R-XC</th><th>CU and</th><th>d FR-></th><th>C(-PV</th><th>VM)>></th></com<>	binatio	on mat	rix of F	R-XC	CU and	d FR->	C(-PV	VM)>>
	H15K	H15K	-								ifunct		<u>`</u> `	,
	H22K	H22K	H18.5K) com			rege	enerat	ion		
	H30K	H30K	H22K			a	ttachn	ient			nverte			
	H37K	H37K	H37K			E	R-XCC	UII		FR-XC				
	H55K	H55K	H55K							7K	F 1 (•	, , , ,		
							01			55K			-	
			CB and FR-XC(-P		-		02			5K			-	
Multifunction	Dedicated box	-type Multin	unction regenera	lion	-		02			37K			-	
regeneration converter	reactor		converter				03		11	571				
FR-XC Dedicated stand-alone reactor	FR-XCB-[] FR-XC	XC-[]*2 FR-XC-[]- PWM			mo	del. To	use the	conve	on funct rter with	the FR	R-XCL,	change	the
FR-XCL		0.01/	22K 18.5K			(ha	armonic			Control		d sele	ction to	o "0"
FR-AGE	18.5K													
Dedicated box-type	22K	30K	22K		3			onic su	ppressio	on funct	ion is n			
Dedicated box-type reactor	22K 37K	30K 37K	22K 37K		3	mo	del. To	onic su use the	ppressio e conve		ion is n the FR	-хсв,	change	e the
Dedicated box-type	22K	30K	22K		3	mc "99	odel. To 999" set	onic su use the tting of	ppressio e conve Pr.416	on funct rter with	ion is n the FR	-хсв,	change	e the
Dedicated box-type reactor	22K 37K	30K 37K	22K 37K		2	mc "99	odel. To 999" set	onic su use the tting of	ppressio e conve Pr.416	on funct rter with Control	ion is n the FR	-хсв,	change	e the
Dedicated box-type reactor	22K 37K 55K	30K 37K 55K	22K 37K 55K		3	mc "99	odel. To 999" set	onic su use the tting of	ppressio e conve Pr.416	on funct rter with Control	ion is n the FR	-хсв,	change	e the
Dedicated box-type reactor	22K 37K 55K H18.5K	30K 37K 55K H22K	22K 37K 55K H18.5K		3	mc "99	odel. To 999" set	onic su use the tting of	ppressio e conve Pr.416	on funct rter with Control	ion is n the FR	-хсв,	change	e the
Dedicated box-type reactor	22K 37K 55K H18.5K H22K	30K 37K 55K H22K H30K	22K 37K 55K H18.5K H22K			mc "99	odel. To 999" set	onic su use the tting of	ppressio e conve Pr.416	on funct rter with Control	ion is n the FR metho	-хсв,	change	e the
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K	30K 37K 55K H22K H30K H37K	22K 37K 55K H18.5K H22K H37K			mc "99	odel. To 999" set	onic su use the tting of	ppressio e conve Pr.416	on funct rter with Control	ion is n the FR metho	-хсв,	change	e the
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K	30K 37K 55K H22K H30K H37K	22K 37K 55K H18.5K H22K H37K			mc "99	odel. To 999" set	onic su use the tting of	ppressio e conve Pr.416	on funct rter with Control	ion is n the FR metho	-хсв,	change	e the
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K	30K 37K 55K H22K H30K H37K H55K	22K 37K 55K H18.5K H22K H37K			mc "99	odel. To 999" set	onic su use the tting of	ppressio e conve Pr.416	on funct rter with Control	ion is n the FR metho	-хсв,	change	e the
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K	30K 37K 55K H22K H30K H37K H55K	22K 37K 55K H18.5K H22K H37K			mc "99 (ha	odel. To 999" set	onic su use the tting of suppre	ppressio e conve Pr.416	on funct rter with Control	ion is n the FR metho	-хсв,	change ction to	e the > "1"
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K	30K 37K 55K H22K H30K H37K H55K	22K 37K 55K H18.5K H22K H37K H55K	7.5	11	mc "99 (ha	odel. To 999" set armonic	onic su use the tting of suppre	ppressio e conve Pr.416	on funct rter with Control	ion is n the FR metho	R-XCB, d selection	change ction to	e the > "1"
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <<200V class>>	30K 37K 55K H22K H30K H37K H55K	22K 37K 55K H18.5K H22K H37K H55K Harmonic suppression	7.5		mc "99 (ha	odel. To 999" set armonic	JK	ppressid e conve Pr.416 ession e	on funct rter with Control nabled)	ion is no the FR metho	R-XCB, d selection	change ction to	e the o "1" WM
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>>	30K 37K 55K H22K H30K H37K H55K Model *1	22K 37K 55K H18.5K H22K H37K H55K H55K		11	FF 15	R-XC-[JK	ppression e conve Pr.416 ession e 37	55	Fi 18.5	R-XCB, ad selection R-XC-	change ction to []K-P ¹ 37	wm 55
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <<200V class>>	30K 37K 55K H22K H30K H37K H55K Model *1	22K 37K 55K H18.5K H22K H37K H55K H55K	7.5	11 11 -	FF 15	R-XC-[22 18.5	JK 30 22	ppression e conve Pr.416 ession e 37 37	55	Fl 18.5 100%	R-XC- 22 30 22	change ction to 37 37 37	WM 55 55
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <<200V class>> Common bus regeneration mode	30K 37K 55K H22K H30K H37K H55K H55K Model *1 Applicable inverter capacity (kV Overload	22K 37K 55K H18.5K H22K H37K H55K H55K	7.5 - 100%	11 11 - o contir	FF 15 15 - nuous /	del. To 199° sei armonic 22 18.5 150%	IK 30 22 60 s	Pr.416 sssion e 37 37 37	55 55 55	Final Stress Str	-xiCB, d selection 22 30 22 contin	()K-P 37 37 37 1000s	WM 55 55 55 /150%
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>2 Common bus regeneration mode	30K 37K 55K H22K H30K H37K H55K Model *1 Applicable inverter capacity (kV Overload	22K 37K 55K H18.5K H22K H37K H55K H55K Uisabled () Enabled current rating enerative capacity (kW)	7.5 - 100%	11 11 -	FF 15 15 -	del. To 199° sei armonic 22 18.5 150%	JK 30 22	ppression e conve Pr.416 ession e 37 37	55	ion is n the FF metho 22 18.5 100% 60 s 18.5	-xiCB, d selection 22 contin 22	(]K-P 37 37 30 30	WM 55 55 7150% 45
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>2 Common bus regeneration mode	30K 37K 55K H22K H30K H37K H55K Model *1 Applicable inverter capacity (kV Overload	22K 37K 55K H18.5K H22K H37K H55K H55K Uisabled 0 Enabled current rating enerative capacit	7.5 - 100% 5.5	11 11 - contir 7.5	FF 15 15 - nuous /	Adel. To 199° set armonic 22 18.5 150% 18.5	JK 30 30 22 60 s 22	Pr.416 sssion e 37 37 37	55 55 55	ion is n the FF metho 22 18.5 100% 60 s 18.5	-xiCB, d selection 22 contin 22 contin	()K-P ()K-P 37 37 37 30 30 00005	WM 55 55 7150% 45 7150%
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>2 Common bus regeneration mode	30K 37K 55K H22K H30K H37K H55K Model *1 Applicable inverter capacity (kV Overload Potential reg Overload	22K 37K 55K H18.5K H22K H37K H55K H55K Uisabled () Enabled current rating enerative capacity (kW) current rating	7.5 - 100% 5.5 100%	11 11 - 7.5 0 contir	FF 15 15 - nuous / 11		JK 30 30 22 60 s 22 60 s 22	37 37 37 30	55 55 55 55 45	ion is n the FF metho 22 18.5 100% 60 s 18.5 100% 60 s Three V 50	-xiCB, d selection 22 - contin 22 - contin - con	()K-P 37 37 37 30 uuous e 200 Hz	WM 55 55 55 /150% 45 /150% to 240
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>2 Common bus regeneration mode	30K 37K 55K H22K H30K H37K H55K Model *1 Applicable inverter capacity (kt Overload Overload	22K 37K 55K H18.5K H22K H37K H55K H55K Uisabled () Enabled current rating enerative capacity (kW) current rating	7.5 - 100% 5.5 100%	11 11 - 7.5 0 contir	FF 15 15 - 100015 / 11 11	adel. To 1999" sei arrmonic 22 18.5 150% 18.5 150% 0 240]K 30 30 22 60 s 22 60 s 22 60 s 22	37 37 37 37 37 37 37 37 37 arr 37 37 37	55 55 55 45	ion is n the FF metho 22 18.5 100% 60 s 18.5 100% 60 s 18.5 100% 60 s Three V 50 Three	-xiCB, d selection 22 	JK-Pl 37 37 37 30 30 nuous 40 40 42 40 42 40 42	WM 55 55 55 /150% 45 /150% to 240 to 230
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>> Common bus regeneration mode Power regeneration mode *2	30K 37K 55K H22K H30K H37K H55K Model *1 Model *1 Applicable inverter capacity (kV Overload Potential reg Overload Rated input / frequency Permissibl	22K 37K 55K H18.5K H22K H37K H55K H55K Uisabled current rating enerative capacity (kW) current rating current rating	7.5 - 100% 5.5 100% Three -	11 11 - 7.5 - phase -	FF 15 15 - 100015 / 11 11	A XC-1 22 18.5 150% 18.5 150% 0.240 Three V 50	JK 30 30 22 60 s 22 60 s 22 60 s 22	37 37	55 55 55 55 45 45	ion is n the FF method 18.5 100% 60 s 18.5 100% 60 s 18.5 100% 60 s Three V 50 Three V 50 Three	-xiCB, d selection 22 -phas Hz/60 -phas Hz/60	change tion to 37 37 37 30 10005 42 e 200 Hz e 200 Hz e 200 Hz e 170	WM 55 55 55 /150% 45 /150% to 240 to 230
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>2 Common bus regeneration mode	30K 37K 55K H22K H30K H37K H55K Model *1 Model *1 Applicable inverter capacity (kV Overload Potential reg Overload Rated input voltage/ frequency	22K 37K 55K H18.5K H22K H37K H55K H55K Uisabled current rating enerative capacity (kW) current rating current rating	7.5 - 100% 5.5 100% Three -	11 11 - 7.5 - phase -	FF 15 15 - 11 11 - - - - - - -	R-XC-[22 18.5 150% 0 240 Three V 50 264 V Three	JK 30 30 22 60 s 25 y 50 Hz 50 Hz p-phas phas	37 30 1z/60 Hz z/60 Hz e 170 f	55 55 55 55 45 45	ion is n it the FF method 18.5 100% 60 s 18.5 100% 60 s 18.5 100% 60 s 18.5 100% 60 s Three V 50 Three V 50 Three V 50	-xiCB, d selection of the selection of t	change change ction to ()K-P 37 37 37 30 10008 200 Hz e 200 Hz e 200 Hz e 200 Hz e 170 Hz e 170	WM 55 55 55 /150% 45 /150% to 240 to 230
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>> Common bus regeneration mode Power regeneration mode *2	30K 37K 55K H22K H30K H37K H55K Model *1 Applicable inverter capacity (kV Overload Potential reg Overload Rated input voltage/ frequency Permissibl AC voltage	22K 37K 55K H18.5K H22K H37K H55K Urrent rating current rating	7.5 - 100% 5.5 100% Three -	11 11 - 7.5 - phase -	FF 15 15 - 11 11 - - - - - - -	R-XC-[22 18.5 150% 0 240 Three V 50 264 V Three]K 30 22 60 s 22 60 s 22 60 s 22 50 Hz 50 Hz	37 30 1z/60 Hz z/60 Hz e 170 f	55 55 55 55 45 45	ion is n it the FF method response for the formation method response for the formation response for th	-xiCB, d selection 	change change ction to ()K-P 37 37 37 30 10008 200 Hz e 200 Hz e 200 Hz e 200 Hz e 170 Hz e 170	WM 55 55 55 /150% 45 /150% to 240 to 230
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>> Common bus regeneration mode Power regeneration mode *2	30K 37K 55K H22K H30K H37K H55K H55K Model *1 Applicable inverter capacity (kk Overload Potential reg Overload Potential reg Overload Rated input / voltage/ frequency Permissibl AC voltage fluctuatior	22K 37K 55K H18.5K H22K H37K H55K Uisabled current rating enerative capacity (kW) current rating enerative capacity (kW) (kW	7.5 - 100% 5.5 100% Three - Three -	11 11 - 7.5 - phase -	FF 15 15 - 11 11 - - - - - - -	R-XC-[22 18.5 150% 0 240 Three V 50 264 V Three	JK 30 30 22 60 s 25 y 50 Hz 50 Hz p-phas phas	37 30 1z/60 Hz z/60 Hz e 170 f	55 55 55 55 45 45	ion is n it the FF method response for the formation method response for the formation response for th	-xiCB, d selection of the selection of t	change change ction to ()K-P 37 37 37 30 10008 200 Hz e 200 Hz e 200 Hz e 200 Hz e 170 Hz e 170	WM 55 55 55 /150% 45 /150% to 240 to 230
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>> Common bus regeneration mode Power regeneration mode *2 Power source	30K 37K 55K H22K H30K H37K H55K Model *1 Applicable inverter capacity (kV Overload Potential reg Overload Potential reg Overload Rated input voltage/ frequency Permissibl frequency	22K 37K 55K H18.5K H22K H37K H55K Uisabled current rating enerative capacity (kW) current rating enerative capacity (kW) (kW	7.5 - 100% 5.5 100% Three - Three -	11 11 - 7.5 - phase -	FF 15 15 - 11 11 - - - - - - -	R-XC-[22 18.5 150% 18.5 150% 240 Three V 50 264 V Three V 50 25% 0.99 of	IK 30 30 30 22 60 s 22 60 s 22 60 s 22 50 Hz -phas Hz/60 -phas Hz/60	37 30 12/60 Hz e 170 Hz e (whe	55 55 55 55 45 45 1z to 230	File 18.5 22 18.5 100% 60 s Three V 50 Three V 50 ±5% ±5% 0.99 d	-xiCB, d selection a selection 22 -22 -22 -22 -22 -22 -22 -22 -22 -22	change ction to 1 K-P 37 37 37 37 30 1000s e 200 Hz e 200 Hz e 170 Hz e (whe e (whe	WM 55 55 55 /150% 45 /150% to 240 to 230
Dedicated box-type reactor	22K 37K 55K H18.5K H22K H37K H55K • Specifications <200V class>===================================	30K 37K 55K H22K H30K H37K H55K H55K Model *1 Applicable inverter capacity (kk Overload Potential reg Overload Potential reg Overload Rated input / voltage/ frequency fluctuation Permissibl frequency	22K 37K 55K H18.5K H22K H37K H55K Uisabled Current rating enerative capacity (kW) current rating Current rating C	7.5 - 100% 5.5 100% Three - Three -	11 11 - 7.5 - phase -	FF 15 15 - 11 11 - - - - - - -	adel. To J99" sei arrmonic 22 18.5 150% 18.5 150% 0 240 Three V 50 264 V Three V 50 ±5% 0.99 of ratio i	IK 30 30 30 22 60 s 22 60 s 22 60 s 22 50 Hz 40 s 50 Hz 50 Hz/60 50 Hz	37 30 12/60 Hz e 170 Hz e (whe %)	55 55 55 55 45 45 1z to 230	File 18.5 22 18.5 100% 60 s 18.5 100% 60 s 18.5 100% 60 s Three V 50	->İCB, d selection 22 ->phas Hz/60 ->phas Hz/60	change ction to i]K-P 37 37 37 37 37 30 1000s e 200 Hz e 200 Hz e 170 Hz e 170 Hz e 170 Hz e (whe %)	the 55 55 55 55 55 7/150% 45 7/150% to 240 to 230 to 264 to 253

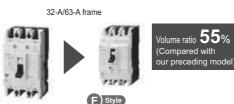

			Spe	cificat	ion an	id stru	icture							
	1001/													
	<<400V class>	Model*1				EF	R-XC-H	IT 1K			FR	-XC-H	[1K-P	WM
		model	Harmonic				1	<u> </u>	07				<u> </u>	
			suppression	7.5	11	15	22	30	37	55	18.5	22	37	5
	Common	Applicable	Disabled	7.5	11	15	22	30	37	55	22	30	37	55
	bus	inverter capacity (kW)	Enabled	-	-	-	18.5	22	37	55	18.5	22	37	55
	regeneration mode	Overload cu	irrent rating	100%	contir	nuous	/150%	60 s	•	•	100% 60 s	contir	nuous	/150
	Power	Potential regend (k)	erative capacity W)	5.5	7.5	11	18.5	22	30	45	18.5	22	30	45
	regeneration mode *2	Overload cu	irrent rating	100%	contir	nuous	/150%	60 s			100% 60s	contir	nuous	/150
		Rated input AC	Disabled	Three	e-phas	e 380 i	to 500	V 50 F	Iz/60 F	Ηz		-phas Hz/60		to 5(
		voltage/ frequency	Enabled	-	-	-		•	e 380 1 Hz *3	to 480	Three V 50 I	-phas Hz/60		
	Power source	Permissible AC	Disabled	Three	Three-phase		V 50 Hz/60 Hz *3 e 323 to 550 V 50 Hz/60 H		Iz/60 F	Hz Three		ree-phase 323 50 Hz/60 Hz		to 58
	Source	voltage fluctuation	Enabled	-	-	-		e-phas Hz/60	e 323 1 Hz	to 506		-phase Hz/60		to 5(
		Permissible	Disabled	±5%	1	1	1		-		±5%		-	
		frequency fluctuation	Enabled	-	-	-	±5%				±5%			
	Input pov	wer factor	Enabled	-	-	-		or mor	•	n load	0.99 d ratio i	or more s 100%	•	en lo
Multifunction	Ar	prox. mass (kg)	*5	5	5	6		10.5	,	28		10.5	,	28
		ram regeneration mod	de with harmonic	suppr	ession	enabl	ed>>							
	Power supply	MCG MC FUS 47	PR-XCB H12 0 R2L12 R2L12 R2L12 R2L12 R2L12 R2L12 S2L22 S2 L2 C S2L22 S2 L2 C S2L22 S2 L2 S2 L2 S2 S2L22 S2 S2 S2 S2 S2 S2 S2 S2 S2	2/L12 2/L22 2/L22 2/L32 OH ES OF	P4 (P/+ (N/- (Junc				Invert *1 *1 S/L2 F/L3 R1/L11 S1/L21 P/+ *2 X10(MRS)+: RES SD Invert		M		

Name (model)		Specification and structure Substantially suppresses power harmonics to obtain the equivalent capacity conversion coefficient K5 = 0 specified in "the														
																d in "the
		onic Suppi						Receiv	e High V	oltage o	r Specia	I High	Voltage	" in Jap	oan.	
		ower rege						noosibl	~							
		ction meth		unving v	vitri seve	an mve	illers is	possibi	e.							
		Select the model according to capacity of the inverter or the applicable motor, whichever larger.														
		cifications		0	. ,							0				
		Model:		20	0 V						400 \	/				
	F	R-HC2-[] *2	7.5K	15K 3	0K 55H	K 75K	H7.5	H15K H	130K H5	5K H75H	< H110 К	H160 K	H220 K	H280 K	H400 K	H560 K
	Δ	pplicable	3.7K	7.51/ 11	5K 30K	37K	2.71	7.51/ 1	FK 201	K 37K		90K	110K	160K		280K
		inverter		7.5K 15 to to		to		7.5K 1 to to	5K 30I o to	to	55K to	to	to		to	to
		pacity (ND ating) *1)K 55K		7.5K		0K 55I					280K		
	Ra	ated input	Three-p	hase 20	00 V to 2	20 V										
		voltage/ equency	50 Hz				Three	phase 3	880 V to	460 V 50)/60 Hz					
	_		200 V t	o 230 V	60 Hz	-					-	-	-	1		1
		ated input urrent (A)	33	61 11	5 215	278	17	31 5	7 110	139	203	290	397	506	716	993
		The total ca	pacity of	the conne	ected inve	erters.		I			- I	ı	ı		·	
	*2	If a high po											? (FR-HC	CL22), ar	nd an o	utside bo
		(FR-HCB2) (If an H280I											FR-HCM	12.)		
High power factor	• Outl	ine dimens	•		,						,			,		
converter FR-HC2-			High	power	factor						•					
and the second se	tage	0		convert	er		Reacto			Reactor						
They sain	/olt	Capacity		FR-HC	-HC2		FR-HCL22 *1			*1	FR-HCB2 *2					
	^		W	Н	D	W	Н	D	W	Н	D	W	Н	D		
A COLORED		7.5K	220	260	170	132	150	100	237.5	230	140	190	320	165		
	>	15K	250	400	190	162	172	126	257.5	260	165		020			
	200	30K	325	550	195	195	210	150	342.5	305	180	270	450	203		
		55K	370	620	250	210	180	200.5	432.5	380	280	100	150	0.50		
	_	75K	465	620	300	240	215	215.5	474	460	280	400	450	250		
		H7.5K	220	300	190	132	140	100	237.5	220	140	100	200	105		
		H15K	220	300	190	162	170	126	257.5	260	165	190	320	165		
		H30K	325	550 670	195	182	195	101	342.5	300	180	270	450	202		
		H55K	370	670 620	250	282.5	245	165	392.5	365	200	270	450	203		
	>	H75K H110K	325 465	620 620	250 300	210 240	175 230	210.5 220	430 500	395 440	280 370	300 350	350 450	250 380		
	400	H110K	405 498	620 1010	300	240 280	230 295	274.5	560	440 520	370 430	350	400	360		
		H160K	498 498	1010	380	280 330	295 335	274.5	620	520 620	430 480	400	450	440		
		H220K	680	1010	380	330	335	321	690		480 560	-	-			
		H400K	790	1330	440	402	460	550	632	675	705	_	-	_		
			790	1330	440	452	545	645	632	720	745	-	-	-		
		H560K					0.0	0.0	001	. 20						
		H560K														
		H560K		ver factor co	onverter			Reactor 1, I	Reactor 2			Outsi	de box			
		H560K		ver factor co	onverter			Reactor 1, I	Reactor 2		8	Outsi	de box	J		
		H560K		ver factor co					Ţ ┣]	•	Outsi	de box	!		
		H560K		•				Reactor 1, 1	Ţ ┣]	8	Outsi	de box			
		H560K	High pov	•]	•	Outsi	de box			
		H560K	High pov	•					Ţ ┣		● ● ●	Outsi				
	*1	Install react	High pov	ICL21 an	d 22) on a			w t] 	<u>●</u> ●	N W				



Mitsubishi Electric Molded Case Circuit Breakers and Earth Leakage Circuit Breakers WS-V Series

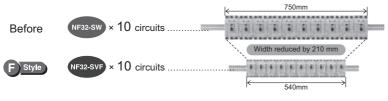
Our main series of products in the industry's smallest class with high breaking capability enabled by a new breaking technology.


The new WS-V series breaker has enhanced usability by further standardizing internal parts, meets international standards, and addresses environmental and energy-saving issues.

Features

· Some models have a 54-mm-wide compact body, which belongs to the smallest class in the industry, by adopting the new "arc run breaking method".*1

- While keeping the breaking capability, the new compact breaker contributes to downsizing of the enclosure and the mechanical equipment. Adopted for the F Style 32-A and 63-A frames. *1
 - Electric field design that enables high speed arc movement Fluid design that improves capability to maintain arc in the grid



(New: 54 mm wide)

(Before: 75 mm wide)

• Significant downsizing

When multiple units are used, the width becomes significantly smaller.

Conforms to various global standards

- New JIS standard: JIS C 8201-2-1 (NF) Annex 1 and Annex 2
- Electrical Appliances and Materials Safety Act (PSE) • IEC standard: IEC 60947-2
- EN (Europe): EN 60947-2, CE marking (TÜV certification, self declaration) GB standard (China): GB/T 14048.2 CCC
- certification
- · Safety certification (Korea): KC marking

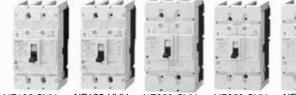
Three-phase power supply supported by CE/CCC marked earth leakage circuit breakers

GB/T 14048.2-2008 was established in China, requiring the earth leakage circuit breaker to fulfill its function even if a phase is lost as is the case with the EN standard in Europe. CE/CCC marked earth leakage circuit breakers of the WS-V series support three phase power supply. Compliance with the revised standard is certified.

Lineup of UL 489 listed circuit breakers with 54 mm width "Small Fit" (F) Style

The compact breakers contribute to a size reduction of machines, and IEC 35 mm rail mounting is standard.

9



For security and standard compliance of machines, F-type and V-type operating handles are available for breakers with 54 mm width.

• Lineup of UL 489 listed circuit breakers for 480 V AC "High Performance" The breaking capacity has been improved to satisfy the request for SCCR upgrading.

Breaking capacity of UL 489 listed circuit breakers for 480 V AC (UL 489) (Example of 240 V AC)

NF125-SVU/NV125-SVU	50 kA
NF125-HVU/NV125-HVU	100 kA
NF250-CVU/NV250-CVU	35 kA
NF250-SVU/NV250-SVU	65 kA
NF250-HVU/NV250-HVU	100 kA

NF125-SVU NF125-HVU NF250-CVU NF250-SVU

NF250-HVU

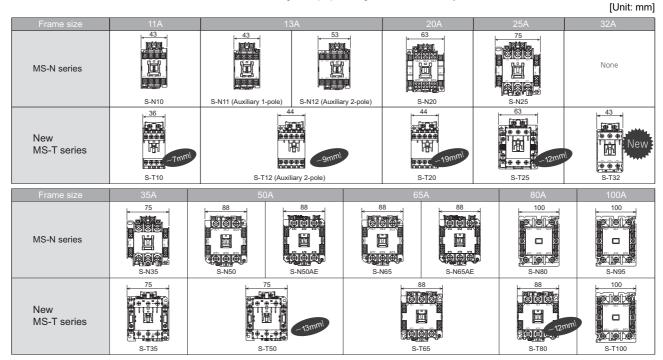
Mitsubishi Electric Magnetic Motor Starters and Magnetic Contactors MS-T Series

Mitsubishi Electric magnetic motor starters have been newly designed and the MS-T series has been released...

The MS-T series is smaller than ever, enabling more compact control panel. The MS-T series is suitable for other Mitsubishi Electric FA equipment. In addition, the MS-T conforms to a variety of global standards, supporting the global use.

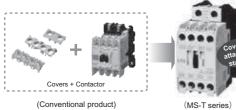
Features

Compact


The width of the 10 A-frame model is as small as 36 mm.

General-purpose magnetic contactor with smallest width *1 in the industry.

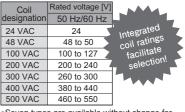
The width of MS-T series is reduced by 32% as compared to the prior MS-N series, enabling a more compact panel.


For selection, refer to page 90.

Based on Mitsubishi Electric research as of November 2019 in the general-purpose magnetic contactor industry for 10 A-frame class. *1

Standardization

 Terminal covers are provided as standard to ensure safety inside the enclosure. Users do not have to make arrangements to specify and obtain options separately. Covers are provided also for the auxiliary contact unit. Users can reduce their inventory.



• Widened range of operation coil ratings (AC operated model) The widened range reduces the number of operation coil rating types from 13 (MS-N series) to 7.

The reduced number of the operation coil types enables more simplified customers' ordering process and the faster delivery. · Customers can select the operation coil more easily.

Coil	Rated vo	ltage [V]
designation	50 Hz	60 Hz
24 VAC	24	24
48 VAC	48 to 50	48 to 50
100 VAC	100	100 to 110
120 VAC	110 to 120	115 to 120
127 VAC	125 to 127	127
200 VAC	200	200 to 220
220 VAC	208 to 220	220
230 VAC	220 to 240	230 to 240
260 VAC	240 to 260	260 to 280
380 VAC	346 to 380	380
400 VAC	380 to 415	400 to 440
440 VAC	415-440	460 to 480
500 VAC	500	500 to 550

*Seven types are available without change for the 50 A frame model or higher.

Global Standard

Conforms to various global standards

Our magnetic contactors are certified as compliant not only with major international standards such as IEC, JIS, UL, CE, and CCC but also with ship classification standards and country specific standards.

This will help our customers expand their business overseas.

			Safety Standard			
	International	Japan	Eur	оре	China	U.S.A./ Canada
			EN	Certification	GB	
Standard			FC Directive DODY	6		
	IEC*2	JIS	CE	TOV Resinand		c (VL) us

The MS-T series also provide safe isolation (mirror contact) specified in the IEC standard. *2

9 Low-Voltage Switchgear/Cables

Spring Clamp Terminal Models Available for Mitsubishi Electric Magnetic Contactor and Magnetic Relay

Spring clamp terminal:

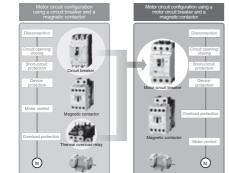
Easy-to-connect terminal that ensures connection with the contact pressure of the spring just by pushing wire into the conductive terminal.Solid wires and ferrules can be connected simply by inserting them into the terminals

Stranded wires can be connected by opening the spring with a tool, inserting wire, and removing the tool.

Features

Key features of the screwless terminals:

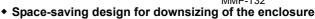
- · Significant reduction in the time required for wiring
- Comparison with the terminal screw model (with round crimp terminal) Wiring with ferrules: 22% reduction
- Wiring with solid or stranded wire: 52% reduction
- Reduction in the time required for wiring
 - Wiring performed by non-experts (with 2-year experience) (The research conducted by Japan Switchboard & control system Industries Association)
- Easy wiring for whoever works on
- Push-in connection eliminates the need for the screw-tightening skills.
- Enhanced maintenance efficiency Screw retightening is not necessary for installation and maintenance of enclosures and machines. Reliable wire connection
- There is no risk of terminal screw loosening due to vibration or shocks, or long-term service.


Motor Circuit Breaker MMP-T Series •

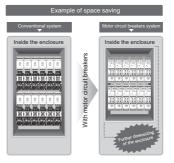
Motor circuit protection (against overload / phase loss / short-circuit) is achievable the MMP-T series alone. The wire-saving, space-saving design enables downsizing of the enclosure. The MMP-T series can be used in combination with the MS-T series .

Features

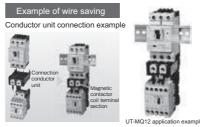
• What is the motor circuit breaker?


The motor circuit breaker, applicable to the motor circuit, has the functions of a circuit breaker and a thermal overload relay in one unit. The motor circuit breaker provides protection against overload, phase loss, and short circuit.

Wire saving


Using a connection conductor unit (option) for connecting a motor circuit breaker and a contactor reduces work hours required for wiring.

A connection conductor unit for the high sensitivity contactor (SD-Q) is also available. (Model: UT-MQ12)



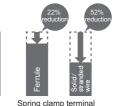
Screw

termina

S-T12SQ

Compliance to major standards support customers' overseas business

Compliance with major global standards


Not only major international standards such as IEC, JIS, UL, CE, and CCC but also other national standards are certified. This will help our customers expand their business in foreign countries.

			Safety Standard			
	International	Japan	Eur	ope	China	U.S.A./ Canada
Standard			EN	Certification	GB	
Stanuaru	IEC	JIS	EC Directive	body	66	c (UL) us
		515	(((\mathbf{m})	CQLUS
				TÜV Rhuininni	<u>u</u>	

UL60947-4-1A Type E/F is also covered.

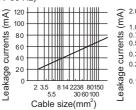
Compliance of the device to UL's Type E/F combination can surely support export to the United States.

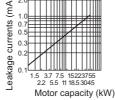
Selecting the rated sensitivity current for the earth leakage circuit breaker

When using an earth leakage circuit breaker with the inverter circuit, select its rated sensitivity current as follows, independently of the PWM carrier frequency.

- Breaker designed for harmonic and surge suppression Rated sensitivity current
- $I\Delta n \ge 10 \times (Ig1 + Ign + Igi + Ig2 + Igm)$ Standard breaker
- Rated sensitivity current
- $I\Delta n \ge 10 \times \{Ig1+Ign+Igi+3 \times (Ig2+Igm)\}$
- Ig1, Ig2: Leakage currents in wire path during commercial power
- supply operation
- Ign: Leakage current of inverter input side noise filter
- Igm: Leakage current of motor during commercial power supply operation
- Igi: Leakage current of inverter unit

Example of leakage current of cable path per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit (200 V 60 Hz)


Leakage current example of three-phase induction motor during the commercial power supply operation (200 V 60 Hz)


Leakage current example of threephase induction motor during the

commercial power supply operation (Totally-enclosed fan-cooled

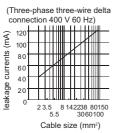
> 3.77.515223755 25.51118.53045 Motor capacity (kW)

type motor 400 V 60 Hz)

2.

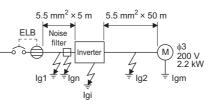
0. 0.

0.3


n

(mA)

currents


leakage 0.

Example of leakage current per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit

For ", connection, the amount of leakage current is appox.1/3 of the above value.

<Example>

- Install the earth leakage circuit breaker (ELB) on the input side of the (a) inverter.
- In the $\,\,
 ightarrow\,\,$ connection earthed-neutral system, the sensitivity current is blunt (b) against a ground fault in the inverter output side. Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (NEC section 250, IEC 61140 class 1 and other applicable standards)

Selection example (in the case of the above figure)

	Breaker designed for harmonic and surge suppression	Standard breaker
Leakage current lg1 (mA)	33×	5 m 00 m =0.17
Leakage current Ign (mA)	0	
Leakage current Igi (mA)	1	
Leakage current lg2 (mA)	33×-5 10	0 m 00 m =1.65
Motor leakage current Igm (mA)	0.18	
Total leakage current (mA)	3.00	6.66
Rated sensitivity current (mA) (⊵lg × 10)	30	100

	Molded case	circuit breaker	, magnetic contactor,	cable gauge
--	-------------	-----------------	-----------------------	-------------

	Motor	Applicable inverter	*2 or earth leaka	uit breaker (MCCB) ige circuit breaker		e magnetic ctor *3	Recommended cable gauge (mm ²) *4		
Voltage	output (kW) *1	model (ND rating)	(ELB) (NF, NV type) Power factor improving (AC or DC) reactor connection		Power factor improving (AC or DC) reactor con- nection		R/L1, S/L2, T/L3 Power factor improving (AC or DC) reactor con- nection		U, V, W
			Without	With	Without	With	Without	With	
	0.1	FR-E820-0008(0.1K)	5A	5A	S-T10	S-T10	2	2	2
	0.2	FR-E820-0015(0.2K)	5A	5A	S-T10	S-T10	2	2	2
	0.4	FR-E820-0030(0.4K)	5A	5A	S-T10	S-T10	2	2	2
>	0.75	FR-E820-0050(0.75K)	10A	10A	S-T10	S-T10	2	2	2
200		FR-E820-0080(1.5K)	15A	15A	S-T10	S-T10	2	2	2
ñ	2.2	FR-E820-0110(2.2K)	20A	15A	S-T10	S-T10	2	2	2
	3.7	FR-E820-0175(3.7K)	30A	30A	S-T21	S-T10	3.5	3.5	3.5
	5.5	FR-E820-0240(5.5K)	50A	40A	S-T35	S-T21	5.5	5.5	5.5
	7.5	FR-E820-0330(7.5K)	60A	50A	S-T35	S-T35	14	8	8
	0.4	FR-E840-0016(0.4K)	5A	5A	S-T10	S-T10	2	2	2
	0.75	FR-E840-0026(0.75K)	5A	5A	S-T10	S-T10	2	2	2
>	1.5	FR-E840-0040(1.5K)	10A	10A	S-T10	S-T10	2	2	2
		FR-E840-0060(2.2K)	15A	10A	S-T10	S-T10	2	2	2
4	3.7	FR-E840-0095(3.7K)	20A	15A	S-T10	S-T10	2	2	2
	5.5	FR-E840-0120(5.5K)	30A	20A	S-T21	S-T12	3.5	2	2
	7.5	FR-E840-0170(7.5K)	30A	30A	S-T21	S-T21	3.5	3.5	3.5
	0.75	FR-E860-0017(0.75K)	5A	5A	3A	3A	2	2	2
	1.5	FR-E860-0027(1.5K)	10A	5A	5A	3A	2	2	2
>		FR-E860-0040(2.2K)	10A	10A	7A	5A	2	2	2
575	3.7	FR-E860-0061(3.7K)	15A	10A	10A	7A	2	2	2
	5.5	FR-E860-0090(5.5K)	20A	15A	15A	10A	2	2	2
	7.5	FR-E860-0120(7.5K)	30A	20A	21A	15A	3.5	2	2

*1 Assumes the use of a 4-pole standard motor.
*2 Select an MCCB according to the power supply capacity. Install one MCCB per inverter.

(For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the Instruction Manual (Connection), and select an appropriate fuse or molded case circuit breaker (MCCB).)

*3 The magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times.

When the magnetic contactor is used for emergency stops during motor driving, the electrical durability is 25 times.

insulated cable), etc.). It assumes a surrounding air temperature of 40°C or lower and in-enclosure wiring.

If using an MC for emergency stop during motor driving or using it on the motor side during commercial power supply operation, select an MC with the class AC-3 rated current for the rated motor current.

*4 Cables The gauge of the cable with the continuous maximum permissible temperature of 90°C or higher. (LMFC (heat resistant flexible cross-linked polyethylene

NOTE

- When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter model, and select cables and reactors according to the motor output.
- When the breaker on the inverter's input side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.

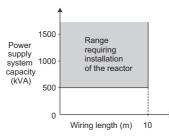
MEMO

Precautions for use

Safety instructions

- To use the product safely and correctly, make sure to read the "Instruction Manual" before the use.
- This product has not been designed or manufactured for use with any equipment or system operated under life-threatening conditions.
- Please contact our sales representative when considering using this product in special applications such as passenger mobile, medical, aerospace, nuclear, power or undersea relay equipment or system.
- Although this product was manufactured under conditions of strict quality control, install safety devices to prevent serious accidents when it is used in facilities where breakdowns of the product or other failures are likely to cause a serious accident.
- Do not use the inverter for a load other than the three-phase induction motor and the PM motor.
- Do not connect a IPM motor in the induction motor control settings (initial settings). Do not use an induction motor in the IPM sensorless vector control settings. It will cause a failure.

Operation


- When a magnetic contactor (MC) is installed on the input side, do not use the MC for frequent starting/stopping. Otherwise the inverter may be damaged.
- When a fault occurs in the inverter, the protective function is acticvated to stop the inverter output. However, the motor cannot be immediately stopped. For machinery and equipment that require an immediate stop, provide a mechanical stop/holding mechanism.
- Even after turning OFF the inverter, it takes time to discharge the capacitor. Before performing an inspection, wait 10 minutes or longer after the power supply turns OFF, then check the voltage using a tester, etc.

Wiring

- Applying the power to the inverter output terminals (U, V, W) causes a damage to the inverter. Before power-on, thoroughly check the wiring and sequence to prevent incorrect wiring, etc.
- Terminals P/+, P1, N/-, and PR are the terminals to connect dedicated options. Do not connect any device other than the dedicated options. Do not short-circuit between the frequency setting power supply terminal 10 and the common terminal 5, and between terminals PC and SD.
- To remove the wire connected to the control circuit terminal, pull the wire while pressing down the open/close button firmly with a flathead screwdriver. Otherwise, the terminal block may be damaged.
- To prevent a malfunction due to noise, keep the signal cables 10cm or more away from the power cables. Also, separate the main circuit cables at the input side from the main circuit cables at the output side.
- After wiring, wire offcuts must not be left in the inverter. Wire
 offcuts can cause an alarm, failure or malfunction. Always keep
 the inverter clean. When drilling mounting holes in an enclosure
 etc., take caution not to allow chips and other foreign matter to
 enter the inverter.
- Set the voltage/current input switch correctly. Incorrect setting may cause a fault, failure or malfunction.

Power supply

 When the inverter is connected near a largecapacity power transformer (500 kVA or more) or when a power factor correction capacitor is to be switched over, an excessive peak current may flow in the power input circuit, damaging the inverter. To prevent this, always install an optional AC reactor (FR-HAL).

If surge voltage occurs in the power supply system, this surge energy may flow into an inverter, and the inverter may display the overvoltage protection (E. OV[]) and trip. To prevent this, install an optional AC reactor (FR-HAL).

Installation

- Install the inverter in a clean place with no floating oil mist, cotton fly, dust and dirt, etc. Alternatively, install the inverter inside the "sealed type" enclosure that prevents entry of suspended substances. For installation in the enclosure, decide the cooling method and the enclosure size to keep the surrounding air temperature of the inverter/the converter unit within the permissible range (for specifications, refer to page 58).
- Some parts of the inverter/the converter unit become extremely hot. Do not install the inverter to inflammable materials (wood etc.).
- · Attach the inverter vertically.

Setting

- Depending on the parameter setting, high-speed operation (up to 590 Hz) is available. Incorrect setting will lead to a dangerous situation. Set the upper limit by using the upper frequency limit setting.
- Setting the DC injection brake operation voltage and operating time larger than their initial values causes motor overheating (electronic thermal O/L relay trip).
- Do not set Pr. 70 Special regenerative brake duty except for using the optional brake resistor. This function is used to protect the brake resistor from overheating. Do not set the value exceeding permissible duty of the brake resistor.

Real sensorless vector control

- Under Real sensorless vector control, always execute offline auto tuning before starting operations.
- The speed command setting range under Real sensorless vector control is 0 to 400 Hz.
- The selectable carrier frequencies under Real sensorless vector control are 2, 6, 10, and 14 kHz.
- Torque control is not available in the low-speed (about 10 Hz or less) regenerative range, or in the low speed with the light load (about 5 Hz or less with about 20% or less of the rated torque).
- The motor may start running at a low speed even when the start signal (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Confirm that the motor running does not cause any safety problems. Under torque control, do not switch between the forward rotation command (STF) and reverse rotation command (STR). The overcurrent trip (E. OC[]) or opposite rotation deceleration fault (E.11) occurs.
- If the inverter may restart during coasting under Real sensorless vector control, set the automatic restart after instantaneous power failure function to enable frequency search (Pr.57 ≠ "9999", Pr.162 = "10").
- Under Real sensorless vector control, sufficient torque may not be obtained in the extremely low-speed range of about 2 Hz or less.
- The approximate speed control range is as described below. Power drive: 1:200 (2, 4, 6 poles), 0.3 Hz or more for 60 Hz rating.

1:30 (8, 10 poles), 2 Hz or more for 60 Hz rating Regenerative driving: 1:12 (2 to 10 poles), 5 Hz or more for 60 Hz rating

• IPrecautions for use of IPM motor

When using the IPM motor, the following precautions must be observed as well.

Safety instructions

Do not use an IPM motor for an application where the motor is driven by the load

Combination of motor and inverter

- For the motor capacity, the rated motor current should be equal to
 or less than the rated inverter current. (Note that the motor rated
 current should be 0.4 kW or higher (0.1 kW or higher for the 200
 V class).) If a motor with substantially low rated current compared
 with the inverter rated current is used, speed and torque
 accuracies may deteriorate due to torque ripples, etc. Set the
 rated motor current to about 40% or higher of the inverter rated
 current.
- · Only one IPM motor can be connected to an inverter.
- An IPM motor cannot be driven by the commercial power supply.

Installation

 While power is ON or for some time after power-OFF, do not touch the motor since the motor may be extremely hot. Touching these devices may cause a burn.

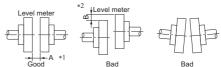
Wiring

- Applying the commercial power supply to input terminals (U,V, W) of a motor will burn the motor. The motor must be connected with the output terminals (U,V, W) of the inverter.
- An IPM motor is a motor with permanent magnets embedded inside. High voltage is generated at the motor terminals while the motor is running. Before wiring or inspection, confirm that the motor is stopped. In an application, such a as fan or blower, where the motor is driven by the load, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise an electric shock may be caused. The inverter power must be turned ON before closing the contacts of the contactor at the output side.
- Match the input terminals (U, V, W) of the motor and the output terminals (U, V, W) of the inverter when connecting.
- Use the following length of wiring or shorter when connecting an IPM motor.

Operation

- About 0.1 s (magnetic pole detection time) takes to start a motor after inputting a start signal.
- An IPM motor is a motor with embedded permanent magnets. Regression voltage is generated when the motor coasts at an instantaneous power failure or other incidents.

The inverter's DC bus voltage increases if the motor coasts fast in this condition. When using the automatic restart after instantaneous power failure function, it is recommended to also use the regeneration avoidance operation to make startups stable.


• Thus, the relation between the rotation speed and the frequency setting is:

Rotation speed = 120 × frequency setting value / number of motor poles

Connection with machine

Direct connection

• When installing, align the motor shaft center and the machine shaft. Insert a liner underneath the motor or the machine legs as required to make a perfect alignment.

- *1 Set so that the A dimensions become the same dimension even when any position is measured by feeler gauge. (inequality in A width 3/100 mm or lower)
- *2 Do not set parts with a vertical gap like B (maximum runoff degree: 3/100 mm).

NOTE

- When a fan or blower is directly connected to the motor shaft or to the machine, the machine side may become unbalanced. When the unbalanced degree becomes larger, the motor vibration becomes larger and may result in a damage of the bearing or other area. The balance quality with the machine should meet the class G2.5 or lower of JISB0905 (the Balance Quality Requirements of Rigid Rotors).
- Connected by belt
- When installing, place the motor shaft and the machine shaft in parallel, and mount them to a position where their pulley centers are aligned. Their pulley centers should also have a right angle to each shaft.
- An excessively stretched belt may damage the bearing and break the shafts. A loose belt may slip off and easily deteriorate. A flat belt should be rotated lightly when it is pulled by one hand. For details, refer to the Instruction Manual of the motor.
- Connected by gear couplings
 Place the motor and machine shafts in parallel, and engage the gear teeth properly.

Permissible vibration during operation

During operation, the motor coupled to a load machine may vibrate according to the degree of coupling between the motor and the load, and the degree of vibration created by the load. The degree of the motor's vibration varies depending on the condition of the foundations and baseplate of the motor. If the motor has higher vibration than the permissible level, investigate the cause, take measure, and take action.

Selection precautions

Inverter capacity selection

- When operating a special motor or multiple motors in parallel by one inverter, select the inverter capacity so that 1.05 times of the total of the rated motor current becomes less than the rated output current of the inverter.
- (Multiple PM motors cannot be connected to an inverter.)
 Do not set **Pr. 70 Special regenerative brake duty** except for using the optional brake resistor. This function is used to protect the brake resistor from overheating. Do not set the value exceeding permissible duty of the brake resistor.

Starting torque of the motor

 The starting and acceleration characteristics of the motor driven by an inverter are restricted by the overload current rating of the inverter. In general, the torque characteristic has small value compared to when the motor is started by a commercial power supply. When a large starting torque is required, and torque boost adjustment, Advanced magnetic flux vector control and Real sensorless vector control cannot generate the sufficient torque, increase both the motor and inverter capacities.

Acceleration/deceleration time

- The motor acceleration/deceleration time is decided by the torque generated by the motor, load torque, and moment of inertia (J) of load.
- The required time may increase when the torque limit function or stall prevention function operates during acceleration/ deceleration. In such a case, set the acceleration/decelerations time longer.
- To decrease the acceleration/deceleration time, increase the torque boost value (setting of a too large value may activate the stall prevention function at a start, longer the acceleration time), use the advanced magnetic flux vector control or real sensorless vector control or increase the inverter and motor capacities. To decrease the deceleration time, it is necessary to add optional brake resistor MRS type, MYS type, or FR-ABR (for the 0.4K or higher), the brake unit (FR-BU2), multifunction regeneration converter (FR-XC), or a similar device to absorb braking energy.

Power transfer mechanisms (reduction gear, belt, chain, etc.)

Caution is required for the low-speed continuous operation of the motor with an oil lubricated gear box, transmission, reduction gear, etc. in the power transfer mechanism. Such an operation may degrade the oil lubrication and cause seizing. On the other hand, the high-speed operation at more than 60 Hz may cause problems with the noise of the power transfer mechanism, life, or insufficient strength due to centrifugal force, etc. Fully take necessary precautions.

Instructions for overload operation

 When performing frequent starts/stops by the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a repeated flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Reducing current may extend the service life but may also cause torque shortage, which leads to a start failure. Adding a margin to the current can eliminate such a condition. For an induction motor, use an inverter of a higher capacity (up to two ranks for the ND rating). For an PM motor, use an inverter and PM motor of higher capacities.

• Precautions on peripheral device selection

Selection and installation of molded case circuit breaker

Install a molded case circuit breaker (MCCB) on the power receiving side to protect the wiring at the inverter input side. Select an MCCB according to the inverter power supply side power factor, which depends on the power supply voltage, output frequency and load. Refer to **page 90**. Especially for a completely electromagnetic MCCB, a slightly large capacity must be selected since its operation characteristic varies with harmonic currents. (Check the reference material of the applicable breaker.) As an earth leakage circuit breaker, use the Mitsubishi Electric earth leakage circuit breaker designed for harmonics and surge suppression. (Refer to **page 89**.)

When installing a molded case circuit breaker on the inverter output side, contact the manufacturer of each product for selection.

Handling of the input side magnetic contactor (MC)

- For the operation using external terminals (using terminal STF or STR), install the input-side magnetic contactor to prevent accidents due to automatic restart when the power is restored after power failures such as an instantaneous power failure, or for safety during maintenance works. Do not use this magnetic contactor for frequent starting/stopping of the inverter. (The switching life of the converter part is about 1 million times.) In the operation by parameter unit, the automatic restart after power restoration is not performed and the magnetic contactor cannot be used to start the motor. The input-side magnetic contactor can stop the motor. However, the regenerative brake of the inverter does not operate, and the motor coasts to a stop.
- Installation of a magnetic contactor at the input side is recommended. A magnetic contactor avoids overheat or burnout of a brake resistor when heat capacity of the resistor is insufficient or a brake regenerative transistor is damaged with short while connecting an optional brake resistor. In this case, shut-off the magnetic contactor when fault occurs and inverter trips.

Handling of the output side magnetic contactor (MC)

- Switch the MC between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When an MC is provided to switch to a commercial power supply, switch it ON/ OFF after the inverter and motor have stopped.
- Do not install a magnetic contactor at the inverter's output side when using a PM motor.

Installation of thermal relay

In order to protect the motor from overheating, the inverter has an electronic thermal O/L relay. However, install an external thermal overcurrent relay (OCR) between the inverter and motors to operate several motors or a multi-pole motor with one inverter. In this case, set 0 A to the electronic thermal O/L relay setting of the inverter. For the external thermal overcurrent relay, determine the setting value in consideration of the current indicated on the motor's rating plate and the line-to-line leakage current. (Refer to page 96.)

Self cooling ability of a motor reduces in the low-speed operation. Installation of a thermal protector or a use of a motor with built-in thermistor is recommended.

Output side measuring instrument

When the inverter-to-motor wiring length is long, especially for the 400 V class, small-capacity models, the meters and CTs may generate heat due to line-to-line leakage current. Therefore, choose the equipment which has enough allowance for the current rating.

When measuring and displaying the output voltage and output current of the inverter, use of terminals AM and 5 output function of the inverter is recommended.

Disuse of power factor improving capacitor (power factor correction capacitor)

The power factor improving capacitor and surge suppressor on the inverter output side may be overheated or damaged by the harmonic components of the inverter output. Also, since an excessive current flows in the inverter to activate overcurrent protection, do not provide a capacitor and surge suppressor. To improve the power factor, use an AC reactor (on **page 39**), a DC reactor (on **page 40**), or a high power factor converter (on **page 55**).

Electrical corrosion of the bearing

When a motor is driven by the inverter, axial voltage is generated on the motor shaft, which may cause electrical corrosion of the bearing in rare cases depending on the wiring, load, operating conditions of the motor or specific inverter settings (high carrier frequency, use of a capacitive filter *1). Contact your sales representative to take appropriate countermeasures for the motor.

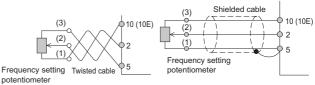
The following shows examples of countermeasures for the inverter.

- Decrease the carrier frequency.
- · Remove the capacitive filter.
- Provide a common mode choke on the output side of the inverter *2
- (This is effective regardless of the use of the capacitive filter.) *1 Mitsubishi Electric capacitive filter: FR-BIF, SF[], FR-E5NF-[], FR-S5NFSA[], FR-BFP2-I
- *2 Recommended common mode choke: FT-3KM F series FINEMET[®] common mode choke cores manufactured by Hitachi Metals, Ltd.
 FINEMET is a registered trademark of Hitachi Metals, Ltd.

Cable gauge and wiring distance

If the wiring distance is long between the inverter and motor, during the output of a low frequency in particular, use a large cable gauge for the main circuit cable to suppress the voltage drop to 2% or less. (The table on **page 90** indicates a selection example for the wiring length of 20 m.)

Especially for long-distance wiring or wiring with shielded cables, the inverter may be affected by a charging current caused by stray capacitances of the wiring, leading to an incorrect activation of the overcurrent protective function. Refer to the maximum wiring length shown in the following table. When multiple motors are connected, use the total wiring length shown in the table or shorter


Cable type	Pr.72 setting (carrier fre- quency)	Voltage class	0.1K	0.2K	0.4K	0.75K	1.5 K	2.2 K	3.7K or higher
ed	1 (1 kHz) or	200V	200	200	300	500	500	500	500
Unshielded	lower	400V	-	-	200	300	500	500	500
shi	2 (2 kHz) or	200V	30	100	200	300	500	500	500
N	lower	400V	-	-	30	100	200	300	100
q	1 (1 kHz) or	200V	50	50	75	100	100	100	100
lde	lower	400V	-	-	50	50	75	100	100
Shielded	2 (2 kHz) or	200V	10	25	50	75	100	100	100
S	lower	400V	-	-	10	25	50	75	100

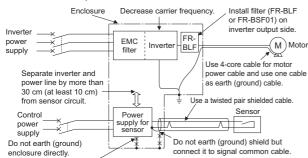
When using the automatic restart after instantaneous power failure function with wiring length exceeding 100m, select without frequency search (Pr. 162 = "1, 11").

When the operation panel is installed away from the inverter and when the parameter unit is connected, use a recommended connection cable.

For the remote operation using analog signals, keep the control cable distance between the operation signal transmitter and the inverter to 30 m or less. Also, to prevent induction from other devices, keep the wiring away from the power circuits (main circuit and relay sequential circuit).

When the frequency setting is performed using the external potentiometer, not using the parameter unit, use a shielded or twisted cable as shown in the figure below. Connect the shield cable to terminal 5, not to the earth (ground).

Earth (ground)


When the inverter is set for the low acoustic noise operation, the leakage current increases compared to in the normal operation due to the high speed switching operation. Always earth (ground) the inverter and the motor. Also, always use the earth (ground) terminal of the inverter for earthing (grounding). (Do not use a case or chassis.)

Electromagnetic interference (EMI)

For the low acoustic noise operation with high carrier frequency, electromagnetic noise tends to increase. Take countermeasures by referring to the following examples. Depending on an installation condition, noise may affect the inverter also in the normal operation (initial status).

- Decrease the carrier frequency (Pr.72) setting to lower the EMI level.
- As measures against AM radio broadcasting noise, radio noise filter FR-BIF produces an effect.
- As measures against sensor malfunction, line noise filter FRBSF01, FR-BLF produces an effect.
- For effective reduction of induction noise from the power cable of the inverter, secure the distance of 30 cm (at least 10 cm) from the power line and use a shielded twisted pair cable for the signal cable. Do not earth (ground) the shield, and connect the shield to a common terminal by itself.

EMI measure example

Do not earth (ground) control cable

Ieakage current

Capacitances exist between the inverter unit I/O cables and other cables or the earth, and within the motor, through which a leakage current flows. Since its value depends on the static capacitances, carrier frequency, etc., low acoustic noise operation at the increased carrier frequency of the inverter will increase the leakage current. Therefore, take the following countermeasures. Select the earth leakage circuit breaker according to its rated sensitivity current, independently of the carrier frequency setting.

To-earth (ground) leakage currents

0.	
Туре	Influence and countermeasure
Influence and countermeasur e	 Leakage currents may flow not only into the inverter own line but also into the other lines through the earthing (grounding) cable, etc. These leakage currents may operate earth leakage circuit breakers and earth leakage relays unnecessarily. Countermeasure If the carrier frequency setting is high, decrease the Pr.72 PWM frequency selection setting. However, the motor noise increases. Selecting Pr.240 Soft-PWM operation selection makes the sound inoffensive. By using earth leakage circuit breakers designed for harmonic and surge suppression in the inverter's own line and other line, operation can be performed with the carrier frequency kept high (with low noise).
Transmission path	Power supply

Line-to-line leakage current

	e leakage current
Туре	Influence and countermeasure
Influence and countermeas ure	 Line-to-line leakage current flows through the capacitance between the inverter/the converter unit output lines. Harmonic component of the leaked current may cause unnecessary operation of an external thermal relay. Long wiring length (50 m or longer) for the 400V class small capacity models (7.5 kW or lower) will increase the rate of leakage current against the rated motor current. In such a case, an unnecessary operation of the external thermal relay may be more liable to occur. Countermeasure Use Pr.9 Electronic thermal O/L relay. If the carrier frequency setting is high, decrease the Pr.72 PWM frequency selection setting. However, the motor noise increases. Selecting Pr.240 Soft-PWM operation selection makes the sound inoffensive. To protect motor securely without being subject to the influence of the motor temperature using a temperature sensor is recommended.
Transmission path	Power supply MCCB MC Thermal relay Inverter Line-to-line static capacitances

Harmonic Suppression Guidelines

Inverters have a converter section (rectifier circuit) and generate a harmonic current.

Harmonic currents flow from the inverter to a power receiving point via a power transformer. The Harmonic Suppression Guidelines was established to protect other consumers from these outgoing harmonic currents.

The three-phase 200 V input specifications 3.7 kW or lower were previously covered by the "Harmonic Suppression Guidelines for Household Appliances and General-purpose Products" and other models were covered by the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage". However, the generalpurpose inverter has been excluded from the target products covered by the "Harmonic Suppression Guidelines for Household Appliances and General-purpose Products" in January 2004 and the "Harmonic Suppression Guideline for Household Appliances and General-purpose Products" was repealed on September 6, 2004.

All capacity and all models of general-purpose inverter used by specific consumers are now covered by the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage".

 "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage"

This guideline sets the maximum values of outgoing harmonic currents generated from a high-voltage or specially high-voltage receiving consumer who will install, add or renew harmonic generating equipment. If any of the maximum values is exceeded, this guideline requires that consumer to take certain suppression measures.

The users who are not subjected to the above guidelines do not need follow the guidelines, but the users are recommended to connect a DC reactor and an AC reactor as usual.

Compliance with the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage"

Input power	Target capacity	Countermeasure
Three- phase 200 V		Confirm the compliance with the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage" published in September 1994 by the Ministry of International Trade and Industry (the present
Three- phase 400 V	All capacities	Japanese Ministry of Economy, Trade and Industry). Take countermeasures if required. Use the following materials as reference to calculate the power supply harmonics. Reference materials "Harmonic Suppression Measures of the General-purpose Inverter" January 2004, Japan Electrical Manufacturers' Association "Calculation Method of Harmonic Current of the General-purpose Inverter Used by Specific Consumers" JEM-TR201 (Revised in December 2003), Japan Electrical Manufacturers' Association

For compliance to the "Harmonic Suppression Guideline of the Generalpurpose Inverter (Input Current of 20A or Less) for Consumers Other Than Specific Consumers" published by JEMA

Input	Target	Measures
power	capacity	Measures
Three- phase 200 V	3.7 kW or lower	Connect the AC reactor or DC reactor recommended in the Catalogs and Instruction Manuals. Reference materials "Harmonic Suppression Guideline of the General-purpose Inverter (Input Current of 20A or Less)" JEM-TR226 (Published in December 2003), Japan Electrical Manufacturers' Association

Calculation of outgoing harmonic current

Outgoing harmonic current = fundamental wave current (value converted from received power voltage) × operation ratio × harmonic content

- Operation ratio: Operation ratio = actual load factor × operation time ratio during 30 minutes
- Harmonic content: Found in the table below.
- Harmonic contents (values when the fundamental wave current is 100%)

10070)								
Reactor	5th	7th	11th	13th	17th	19th	23rd	25th
Not used	65	41	8.5	7.7	4.3	3.1	2.6	1.8
Used (AC side)	38	14.5	7.4	3.4	3.2	1.9	1.7	1.3
Used (DC side)	30	13	8.4	5.0	4.7	3.2	3.0	2.2
Used (AC, DC sides)	28	9.1	7.2	4.1	3.2	2.4	1.6	1.4

· Rated capacities and outgoing harmonic currents when driven by

	erter											
Applied motor(kW)	me wa cur	nda- ntal ive rent A)	Fundamental wave current converted from 6.6 kV (mA)	Rated capacity(kVA)		ve	ng ha rted f ctor,	from	6.6 I	kV (n	ıA)	
App moto	200 V	400 V	Fundamental wave converted from 6.6	Rated cap	5th	7th	11t h	13t h	17t h	19t h	23r d	25t h
0.4	1.61	0.81	49	0.57	31. 85	20. 09	4.1 65	3.7 73	2.1 07	1.5 19	1.2 74	0.8 82
0.75	2.74	1.37	83	0.97	53. 95	34. 03	7.0 55	6.3 91	3.5 69	2.5 73	2.1 58	1.4 94
1.5	5.50	2.75	167	1.95	108 .6	68. 47	14. 20	12. 86	7.1 81	5.1 77	4.3 42	3.0 06
2.2	7.93	3.96	240	2.81		98. 40	20. 40	18. 48	10. 32	7.4 40	6.2 40	4.3 20
3.7	13.0	6.50	394	4.61	257 .1	161 .5	33. 49	30. 34	16. 94	12. 21	10. 24	7.0 92
5.5	19.1	9.55	579	6.77	376 .1	237 .4	49. 22	44. 58	24. 90	17. 95	15. 05	10. 42
7.5	25.6	12.8	776	9.07	504 .4	318 .2	65. 96	59. 75	33. 37	24. 06	20. 18	13. 97
11	36.9	18.5	1121	13.1	728 .7	459 .6	95. 29	86. 32	48. 20	34. 75	29. 15	20. 18

· Conversion factors

Classification	Circi	Conversion coefficient Ki	
		Without reactor	K31 = 3.4
	I hree-phase bridge (Capacitor	With reactor (AC side)	K32 = 1.8
3		With reactor (DC side)	K33 = 1.8
	smoothing)	With reactors (AC, DC sides)	K34 = 1.4
5	Self-excitation three-phase bridge	When a high power factor converter is used	K5 = 0

Compatible Motors

• List of applicable inverter models by rating (motor capacity \rightarrow inverter model)

200 V class

Motor	DC reactor		LD		ND			
capacity (kW)*1	FR-HEL-[]	Model Fl	R-E820-[]	Rated cur- rent (A)	Model Fl	R-E820-[]	Rated cur- rent (A)	
0.1	0.4K*2	0.1K	8000	0.8	0.1K	8000	0.8	
0.2	0.4K*2	0.1K	8000	0.8	0.2K	0015	1.5	
0.4	0.4K	0.2K	0015	1.5	0.4K	0030	3	
0.75	0.75K	0.4K	0030	3	0.75K	0050	5	
1.1	1.5K	0.75K	0050	5	1.5K	0080	8	
1.5	1.5K	1.5K	0080	8	1.5K	0080	8	
2.2	2.2K	1.5K	0080	8	2.2K	0110	11	
3	3.7K	2.2K	0110	11	3.7K	0175	17.5	
3.7	3.7K	3.7K	0175	17.5	3.7K	0175	17.5	
5.5	5.5K	3.7K	0175	17.5	5.5K	0240	24	
7.5	7.5K	5.5K	0240	24	7.5K	0330	33	
11	11K	7.5K	0330	33	-	-	-	

♦ 400 V class

Motor	DC reactor		LD			ND			
capacity (kW)*1	FR-HEL-[]	Model FR-E840-[]		Rated cur- rent (A)	Model FR-E840-[]		Rated cur- rent (A)		
0.4	H0.4K	0.4K	0016	1.6	0.4K	0016	1.6		
0.75	H0.75K	0.4K	0016	1.6	0.75K	0026	2.6		
1.5	H1.5K	0.75K	0026	2.6	1.5K	0040	4		
2.2	H2.2K	1.5K	0040	4	2.2K	0060	6		
3	H3.7K	2.2K	0060	6	3.7K	0095	9.5		
3.7	H3.7K	3.7K	0095	9.5	3.7K	0095	9.5		
5.5	H5.5K	3.7K	0095	9.5	5.5K	0120	12		
7.5	H7.5K	5.5K	0120	12	7.5K	0170	17		
11	H11K	7.5K	0170	17	-	-	-		

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor.
 *2 The power factor may be slightly lower.
 • Overload current rating

LD	120% 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C
ND	150% 60 s, 200% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C

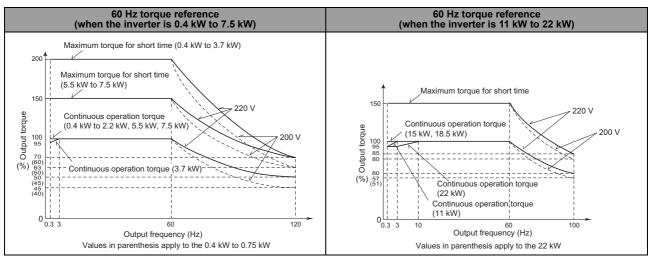
Application to constant-torque motors

SF-HRCA type

 Continuous operation even at low speed of 0.3 Hz is possible (when using Real sensorless vector control).
 For the 37 kW or lower (except for 22 kW), load torque is not needed to be reduced even at a low speed and constant torque (100% torque) continuous operation is possible within the range of speed ratio 1/20 (3 to 60 Hz).

(The characteristic of motor running at 60 Hz or higher is that output torque is constant.)

- Installation size is the same as that of the standard motor.
- Note that operation characteristic in the chart below cannot be obtained if V/F control is used.


Standard specifications (indoor type)

Output (kW)	Number of poles	Frequency range	Common specification
0.4			
0.75			
1.5			
2.2		3 to 120 Hz	Base frequency 60 Hz
3.7			 Rotation direction (CCW)
5.5			Counterclockwise when viewed
7.5			from the motor end
11	4		 Lead wire 3.7 kW or lower: 3 wires
15			5.5 kW or higher: 6 or 12 wires
18.5		3 to 100 Hz	 Surrounding air temperature:
22			40°C or lower
30			The protective structure is IP44.
37			
45		3 to 65 Hz	
55			

Motor torque

The following shows torque characteristics of the motor in combination with the inverter with the ND rating. The overload capacity decreases for the LD rating. Observe the specified range of the inverter.

+ Continuous rated range of use (Real sensorless vector control)

The maximum short-time torque indicates the maximum torque characteristics within 60 s.

For the motor constant under Real sensorless vector control, please contact your sales representative.

• Specification comparison between PM sensorless vector control and induction motor control

Item	PM sensorless vector control	Induction motor control	
Applicable motor	IPM motor, SPM motor *1	Induction motor *1	
Starting torque 50%		200% (FR-E820-0175(3.7K) or less, FR-E840-0095(3.7K) or less, FR-E860-0061(3.7K) or less) 150% (FR-E820-0240(5.5K) or higher, FR-E840- 0120(5.5K) or higher, FR-E860-0090(5.5K) or higher) under Real sensorless vector control and vector control	
Startun delav	· · · ·	No startup delay (when online auto tuning is not performed at startup).	
commercial power supply	Cannot be driven by the commercial power supply.	Can be driven by the commercial power supply.	
	While the motor is coasting, potential is generated across motor terminals.	While the motor is coasting, potential is not generated across motor terminals.	
Torque control Not available		Available under Real sensorless vector control	

*1 For the motor capacity, the rated motor current should be equal to or less than the rated inverter current. (Note that the motor rated current should be 0.4 kW or higher (0.1 kW or higher for the 200 V class).) If a motor with substantially low rated current compared with the inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about 40% or higher of the inverter rated current.

• NOTE

• Before wiring, make sure that the motor is stopped. Otherwise an electric shock may occur.

- Never connect an IPM motor to the commercial power supply.
- No slippage occurs with an IPM motor because of its characteristic. If an IPM motor, which took over an induction motor, is driven at the same speed as for the induction motor, the running speed of the IPM motor becomes faster by the amount of the induction motor's slippage. Adjust the speed command to run the IPM motor at the same speed as the induction motor, as required.

• Countermeasures against deterioration

of the 400 V class motor insulation

When driving a 400 V class motor by the inverter, surge voltages attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor. When the 400 V class motor is driven by the inverter, consider the following countermeasures:

With induction motor

It is recommended to take one of the following countermeasures:

· Rectifying the motor insulation and limiting the PWM carrier frequency according to the wiring length

For the 400 V class motor, use an <u>insulation-enhanced motor</u>. Specifically,

- Order a "400 V class inverter-driven insulation-enhanced motor".
- For the dedicated motor such as the constant-torque motor and low-vibration motor, use an "inverter-driven dedicated motor".
 Set Pr.72 PWM frequency selection as indicated below according to the wiring length.

Wiring length	Wiring length	Wiring length
50 m or shorter	50 m to 100 m	Longer than 100 m
14.5 kHz or lower	8 kHz or lower	2 kHz lower

· Suppressing the surge voltage on the inverter side

• Connect a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) at the output side of the inverter.

• With PM motor

Use the wiring length of 100 m or shorter when connecting a PM motor.

Use one PM motor for one inverter. Multiple PM motors cannot be connected to an inverter.

When the wiring length exceeds 50 m for a 400 V class motor driven by an inverter under PM sensorless vector control, set "9" (6 kHz) or less in Pr.72 PWM frequency selection.

• A surge voltage suppression filter (FR-ASF-H/FR-BMF-H) can be used under V/F control and Advanced magnetic flux vector control.

• Application to special motors

Motors with brake

Use the motor with brake having independent power supply for the brake, connect the brake power supply to the inverter primary side power and make the inverter output off using the output stop terminal (MRS) when the brake is applied (motor stop). Rattle may be heard according to the type of the brake in the low speed region but it is not a fault.

Pole changing motor

As this motor differs in rated current from the standard motor, confirm the maximum current of the motor and select the inverter. Be sure to change the number of poles after the motor has stopped. If the number of poles is changed during rotation, the regenerative overvoltage protection circuit may be activated to cause an inverter alarm, coasting the motor to a stop.

Submersible motor

Since the motor rated current is larger than that of the standard motor, make selection of the inverter capacity carefully. In addition, the wiring distance between the motor and inverter may become longer, refer to **page 90** to perform wiring with a cable thick enough. Leakage current may flow more than the land motor, take care when selecting the earth leakage current breaker.

Explosion-proof motor

To drive an explosion-proof type motor, an explosion-proof test of the motor and inverter together is necessary. The test is also necessary when driving an existing explosion-proof motor.

The inverter is a non-explosion proof structure, install it in a safety location.

Geared motor

The continuous operating rotation range of this motor changes depending on the lubrication system and maker. Especially in the case of oil lubrication, continuous operation in the low-speed range only can cause gear seizure. For fast operation at higher than 60 Hz, please consult the motor maker.

Synchronous motor other than PM motor

This motor is not suitable for applications of large load variation or impact, where out-of-sync is likely to occur. Please contact your sales representative when using this motor because its starting current and rated current are greater than those of the standard motor and will not rotate stably at low speed.

• Single phase motor

The single phase motor is not suitable for variable operation by the inverter.

For the capacitor starting system, the capacitor may be damaged due to harmonic current flowing to the capacitor. For the split-phase starting system and repulsion starting system, not only output torque is not generated at low speed but it will result in starting coil burnout due to failure of centrifugal force switch inside. Replace with a three-phase motor for use.

• Major differences from the FR-E700 series

	Item	FR-E800	FR-E700	
Mu	ultiple rating		N/A (ND rating only)	
	ND rating	150% 60 s, 200% 3 s at surrounding air temperature	e of 50°C	
Permissible load	LD rating	120% 60 s, 150% 3 s at surrounding air temperature of 50°C	N/A	
Built-in brake transistor		200 V class: 0.4K to 22K	200 V class: 0.4K to 15K	
		400V class: 0.4K to 22K	400V class: 0.4K to 15K	
		575V class: 0.75K to 7.5K		
	V/F control	Soft-PWM control / High carrier frequency PWM Available		
	Advanced magnetic flux			
	Vector control General-purpose magnetic	Available		
Control method	flux vector control Real sensorless vector	Not available	Available	
	Control PM sensorless vector	Available	Not available	
	control	Available	Not available	
Control mode	Speed control	Available		
	Torque control	Available	Not available	
Out	put frequency	0.2 to 590 Hz (under V/F control)	0.2 to 400 Hz	
Sut	,	0.2 to 400 Hz (under other than V/F control)		
	T	0.015 Hz / 0 to 60 Hz (0 to 10 V / 12 bits)	0.06 Hz / 0 to 60 Hz (0 to 10 V / 10 bits)	
Frequency	Terminal 2	0.03 HZ / 0 to 60 HZ (0 to 5 V / 11 bits)	0.12 Hz / 0 to 60 Hz (0 to 5 V / 9 bits)	
setting		0.03 Hz / 0 to 60 Hz (0 to 20 mA / 11 bits)	, , , , , , , , , , , , , , , , , , ,	
resolution	Termsin et 4	0.015 Hz / 0 to 60 Hz (0 to 10 V / 12 bits)	0.06 Hz / 60 Hz (0 to 10 V / 10 bits)	
	Terminal 4		0.12 Hz / 60 Hz (0 to 5 V / 9 bits)	
		0.03 Hz / 0 to 60 Hz (0 to 20 mA / 11 bits) Major additional functions	0.06 Hz / 60 Hz (0 to 20 mA / 10 bits)	
		Signals added for additional control methods/		
		modes (e.g. MC signal for control mode switching)		
	Terminal function			
	Terminal function	• Signals added for the trace function (e.g. Trace	-	
In much a tangent		trigger input (TRG) signal)		
Input signal		• Signals added for the PLC function (Sequence		
		start (SQ) signal)		
		FR-E800/FR-E800-E:	Safety stop function model only.	
	Safety stop	Safety stop input (S1)	Safety stop input (S1)	
	signal	Safety stop input (S2)	Safety stop input (S2)	
		Safety stop input common (PC)	Safety stop input common (PC)	
		Major additional functions		
0	4 1 f	Traverse, multi-rating, PLC function, torque limit,		
Opera	tional functions	trace function, load fault detection, Ethernet	-	
		communication (incl. CC-Link IE TSN, EtherNet/IP), and others		
		Major additional functions		
		Signals added for additional control methods/		
		modes		
		(e.g. Home position return completed (ZP) signal		
	Terminal function	To be supported)	-	
		• Signals added for the load fault detection function		
		(e.g. Upper limit warning detection (LUP) signal)		
		• Virtual output terminals for communication (NET		
		Y1 to Y4)		
	Specification of terminal FM	1440 pulses/s at full scale		
			AM: 0 to +10 V	
	Specification of terminal AM	-10 to +10 V / 12 bits	(Provided only for inverters other than Japanese specification)	
		Major additional functions		
Output signal	Output cignal	Signals added for additional control methods/		
Surpur Signal	Output signal (for terminal FM /	modes (e.g. position command To be supported,	-	
	terminal AM)	torque monitor)		
		• PID measured value 2		
		Major additional functions		
		Signals added for BACnet communication		
	Output signal (for communication)	(e.g. signal for BACnet reception status)	-	
		Communication station number		
	(ioi communication)		1	
	(ioi communication)	(PU port, CC-Link)		
		(PU port, CC-Link) FR-E800/FR-E800-E:	The following signals can be assigned to output	
		(PU port, CC-Link)	terminals.	
	Safety stop function	(PU port, CC-Link) FR-E800/FR-E800-E: • Safety monitor output (SO) • Safety stop input/output common (SOC)	terminals. SAFE signal (used to monitor safety stop status)	
		(PU port, CC-Link) FR-E800/FR-E800-E: • Safety monitor output (SO)	terminals.	
		(PU port, CC-Link) FR-E800/FR-E800-E: • Safety monitor output (SO) • Safety stop input/output common (SOC) • The following signals can be assigned to output	terminals. SAFE signal (used to monitor safety stop status)	

	ltem	FR-E800	FR-E700		
Protective/	Protective function	Major additional functions Upper limit fault detection (E.LUP) and others	-		
warning output	Warning function	Major additional functions Duplicate IP address (DIP),IP address fault (IP), Incorrect parameter setting (SE), and others	-		
Operation panel	Standard	Operation panel equipped as standard (not removable). Four-digit display using a 7-segment LED is employed.			
	Optional	Enclosure surface operation panel (FR-PA07)	Enclosure surface operation panel (FR-PA07) Parameter unit (FR-PU07(BB))		
Main o	ircuit terminals	R, S, T, U, V, W, P, PR, N, P1, earth (ground) (screv	v terminal type)		
	Shape of terminal block	Spring clamp type	Standard control circuit terminal model: Screw type Safety stop function model: Spring clamp type		
	Contact input	FR-E800: 7 terminals FR-E800-E: 2 terminals	Standard control circuit terminal model: 7 terminals Safety stop function model: 6 terminals		
Control circuit terminal	Analog input	FR-E800: 2 terminals FR-E800-E: 2 terminals	2 terminals		
terminar	Relay output	FR-E800: 1 terminal FR-E800-E: 1 terminal	1 terminal		
	Open collector output.	FR-E800: 2 terminals FR-E800-E: 0	2 terminals		
	Pulse output	1 terminal (FM type only)	1 terminal		
İ	Analog output	1 terminal (AM type only)	N/A		
	Safety I/O signal	FR-E800/FR-E800-E: S1, S2, SIC, SO, SOC	S1, S2, PC (Safety stop function model only.)		
	Ethernet	Available, two ports CC-Link IE TSN, CC-Link IE Field Network Basic, EtherNet/IP, PROFINET, MODBUS/TCP, BACnet/ IP (provided for FR-E800-E only)	Available, one port CC-Link IE Field Network Basic MODBUS/TCP (provided for FR-E700-NE only)		
Communication	RS-485	Available, one port, Mitsubishi inverter protocol, MC (Not available for FR-E800-E and FR-E800-SCE)	DBUS RTU		
USB		Available, mini B connector, USB bus power available (Maximum SCCR: 500 mA)	Available, mini B connector, USB bus power unavailable		
Surrounding air temperature		200/400 V class: -20°C to +60°C (Derate the rated current when using the inverter in a temperature exceeding 50°C.) 575 V class: -10°C to +60°C (Derate the rated current when using the inverter in a temperature exceeding 50°C.)	-10°C to +50°C		
Stora	ge temperature	-40°C to +70°C	-20°C to +65°C		

Installation precautions

Removal procedure of the front cover is different. (Refer to the Instruction Manual (Connection).)
Plug-in options of the FR-A700 series are not compatible.

Wiring precautions

- When the FR-E700 standard control circuit terminal model is replaced, the terminal block type is changed from the screw type to the spring clamp type.
- Use of blade terminals is recommended.
- To use the PU connector, note that wiring methods are different. (Refer to the Instruction Manual (Connection).)

• Comparison with the FR-E700 series in functions

		Differenc	es with the I	-R-E700	
Parameter/function	Addition	Modifica- tion	Deletion	Related parameter	Remarks
Base frequency or other functions related to output frequency		~		Pr.3 and others	Maximum setting was changed from 400 Hz to 590 Hz. Max. 400 Hz when the control method is not V/ F control.
MRS input selection		√		Pr.17	Addition of normally closed (NC contact) input specification for terminal X10
Stall prevention operation level and related functions		V		Pr.22, Pr.150, Pr.165	Multiple ratings LD: 120% ND: 150%
Operation panel main monitor selection, TM terminal function selection, and related functions		√		Pr.52, Pr.54, and others	Addition of monitor items (e.g. running speed)
Frequency / rotation speed Unit switchover	√			Pr.53	
Restart coasting time and others		~		Pr.57, Pr.165	Change of the setting range
Remote function selection		v		Pr.59	Remote setting enabled for deceleration to the frequency to the set frequency or lower
Retry waiting time		v		Pr.68	 Change of the retry waiting time Change of the operation to be performed when a fault that does not trigger a retry occurs during retry waiting time
Special regenerative brake duty		v		Pr.70	Change of the setting range for the brake duty
Applied motor		~		Pr.71	Addition of the premium efficiency motor SF-PR series.
Motor capacity, number of motor poles, and the like		~		Pr.80, Pr.81, and others	Addition of 11 to 30 kW motors. 12 motor poles are supported.
Online auto tuning selection	✓			Pr.95	
Built-in potentiometer switching			√	Pr.146	
Output current detection operation selection	✓			Pr.166, Pr.167	
I/O terminal function selection and related functions		✓		Pr.178 to Pr.192	Addition of input/output signals
NET output selection	√			Pr.193 to Pr.196	
Control circuit board Corrosion-Attack-Level Alert System	√			Pr.198	
PWM frequency automatic switchover	√			Pr.260	
Brake opening current		√		Pr.279	The setting range is extended to 400%.
Speed deviation excess	✓			Pr.285	
detection frequency Output terminal filter	√			Pr.289	The terminal response can be adjusted.
Monitor negative output selection	✓			Pr.290	
Overspeed detection level	✓			Pr.374	
Initial communication delay time,			~	Pr.387, Pr.388, Pr.389,	
heartbeat settings				Pr.391, Pr.392 Pr.414 to Pr.417,	
PLC function	√			Pr.498, Pr.1150 to Pr.1199, Pr.415 to Pr.417	
Extension output terminal filter	√			Pr.418	
Gateway address	√			Pr.442 to Pr.445	
Digital torque command	√			Pr.447, Pr.448	
Second motor control	√			Pr.451, Pr.453 to Pr.462,Pr.463 and others	
Speed setting reference	√			Pr.505	
Display estimated main circuit capacitor residual life	✓			Pr.506	
Display ABC relay contact life	✓			Pr.507	
Display power cycle life	✓			Pr.509	
PID signal operation selection	 ✓ 			Pr.553, Pr.554	
Second frequency search gain	✓ 			Pr.560	
Multiple rating setting	v			Pr.570	

		Differend	es with the l	FR-E700	
Parameter/function	Addition	Modifica- tion	Deletion	Related parameter	Remarks
PID output suspension function	~			Pr.575 to Pr.577	
Traverse function	√			Pr.592 to Pr.597	
PID set point and related settings	✓			Pr.609, Pr.610	
Inverter output fault detection enable/disable selection	✓			Pr.631	
Brake opening current selection	✓			Pr.639	
Brake operation frequency selection	~			Pr.640	
Speed smoothing cutoff frequency	~			Pr.654	
SF-PR slip amount adjustment	√			Pr.673 to Pr.675	
Input terminal filter Device instance	~		1	Pr.699 Pr.728, Pr.729	The terminal response can be adjusted.
Second motor constant and	<u>ح</u>			Pr.737 to Pr.746	
related settings PID unit selection	•			Pr.759	
Operation panel monitor item	v ./				
selection Operation frequency during	* ~			Pr.774 to Pr.776	
communication error	v			Pr.779	
Acceleration time in low- speed range deceleration time in low-speed range	√			Pr.791, Pr.792	
Control mode selection	×	v	×	Pr.800, Pr.702 to Pr.712, Pr.717, Pr.721, Pr.724, Pr.725, and others	 Real sensorless vector control, PM sensorless vector control Addition Addition of torque control Deletion of General-purpose magnetic flux vector control Setting value for V/F control changed to 40
Real sensorless vector control, vector control	¥			Pr.801 to Pr.810, Pr.820 to Pr.822, Pr.824 to Pr.826, Pr.830 to Pr.832, Pr.834 to Pr.836, Pr.850 and others	
Analog input offset adjustment	~			Pr.849	
Low speed detection	~			Pr.865	
Terminal 4 function	√			Pr.858, Pr.932 to Pr.933	
AM output filter	✓			Pr.867	
Speed detection hysteresis	✓			Pr.870	
OLT level setting	√			Pr.874	
Energy saving monitoring	✓			Pr.891 to Pr.899	
PID display	√			Pr.934 to Pr.935	
Safety fault code display	✓			Pr.986	
Operation panel setting dial push monitor selection	~			Pr.992	
Fault initiation	✓			Pr.997	
PM parameter initialization	~			Pr.998	
Automatic parameter setting	√			Pr.999	
Clock function	✓			Pr.1006 to Pr.1008	
Trace function	~			Pr.1020 to Pr.1047	
Monitor filter	√			Pr.1106 to Pr.1108	Filter for monitoring of torque, running speed, and excitation current
Inverter-to-inverter link function	√			Pr.1124, Pr.1125	
Inverter identification enable/ disable selection	√			Pr.1399	
Ethernet communication function (CC-Link IE TSN and others)	✓			Pr 1/2/ to Pr 1/57	FR-E700-NE supports CC-Link IE Field Network Basic, MODBUS/TCP, MELSOFT / FA product connection, and SLMP.
Load characteristics fault detection	✓			Pr.1480 to Pr.1492	

• Major differences between the standard model (FR-E800) and the Ethernet communication model (FR-E800-E)

	tem	FR-E800	FR-E700	
	lame	Standard model	Ethernet model	
	motor capacity	ND rating: 0.1 to 7.5 kW LD rating: 0.2 to 11 kW		
		(Same for FR-E800, FR-E800-E, and FR-E800-SCE)		
Output, power supply, protective structure, cooling system, approximate mass Outline dimension / Installation dimension		Same for FR-E800, FR-E800-E, and FR-E800-SCE		
Main cire	cuit terminal	R, S, T, U, V, W, P, PR, N, P1, earth (ground) (Same for FR-E800, FR-E800-E, and FR-E800-SCE)		
	Contact input	7 terminals: STF, STR, RH, RM, RL, MRS, RES, SD, PC	2 terminals: DI0, DI1, SD, PC	
	Analog input	2 terminals: 2, 4, 10, 5 (same for FR-E800, FR-E800-E)		
Control circuit	Relay output	1 terminal: A, B, C (same for FR-E800, FR-E800-E)		
terminal	Open collector Output	2 terminals: RUN, FU, SE	N/A	
	Pulse output	1 terminal: FM type only	N/A	
	Analog output	1 terminal: AM type only	N/A	
	Safety I/O signal	1 terminal: S1, S2, SO, SOC		
		N/A	Available, two ports CC-Link TSN, CC-Link IE Field Network Basic EtherNet/IP, PROFINET, MODBUS/TCP, BACnet/IP	
	Safety communication	N/A		
Communication		Available, one port Mitsubishi inverter protocol MODBUS RTU	N/A	
	USB	Available, mini B connector, USB bus power available		
	Option unit	1 slot CC-Link		

MEMO

MEMO

Warranty

When using this product, make sure to understand the warranty described below.

1. Warranty period and coverage

We will repair any failure or defect (hereinafter referred to as "failure") in our FA equipment (hereinafter referred to as the "Product") arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced.

[Term]

The term of warranty for Product is twelve months after your purchase or delivery of the Product to a place designated by you or eighteen months from the date of manufacture whichever comes first ("Warranty Period"). Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Limitations]

- (1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule. It can also be carried out by us or our service company upon your request and the actual cost will be charged.
- However, it will not be charged if we are responsible for the cause of the failure.
- (2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
- (3) Even during the term of warranty, the repair cost will be charged on you in the following cases;
 - 1) a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
 - 2) a failure caused by any alteration, etc. to the Product made on your side without our approval
 - a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
 - 4) a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
 - 5) any replacement of consumable parts (condenser, cooling fan, etc.)
 - 6) a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
 - 7) a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
 - 8) any other failures which we are not responsible for or which you acknowledge we are not responsible for
- 2. Term of warranty after the stop of production
 - (1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The
 - announcement of the stop of production for each model can be seen in our Sales and Service, etc.
 - (2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.
- 3. Service in overseas

Our regional FA Center in overseas countries will accept the repair work of the Product; however, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.

- 4. Exclusion of loss in opportunity and secondary loss from warranty liability
 - Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
 - (1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
 - (2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
 - (3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
 - (4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.
- 5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.

6. Application and use of the Product

- (1) For the use of our product, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in product, and a backup or fail-safe function should operate on an external system to product when any failure or malfunction occurs.
- (2) Our product is designed and manufactured as a general purpose product for use at general industries.

Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used.

In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used. We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

MEMO

MEMO

Mitsubishi Electric's global FA network delivers reliable technologies and security around the world.

Production bases Under the lead of Nagoya Works, we form a powerful network to optimize our manufacturing processes.

Domestic bases

Nagoya Works

Shinshiro Factory Kani Factory

Production bases overseas

MDI Mitsubishi Electric Dalian Industrial Products Co., Ltd.

MEI Mitsubishi Electric India Pvt.

 MEAMC
 Mitsubishi Electric Automation Manufacturing (Changshu) Co., Ltd.

 MEATH
 Mitsubishi Electric Automation (Thailand) Co., Ltd.

		P	1		
	1				
	6		2.		
14	100		1	11	
18		相信	10	hil.	

Thailand FA Center MITSUBISHI ELECTRIC FACTORY AUTOMATION (THAILAND) CO., LTD

> Korea FA Center MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD.

Service bases are established around the world to provide the same services as in Japan globally. Overseas bases are opening one after another to support our customers' business expansion.

Area	Our overseas	FA centers	
EMEA	26	7	
China	17	4	
Asia	31	13	
Americas	15	6	
Others	1	0	
Total	90	30	
•As of July 2017			

Taichung FA Center MITSUBISHI ELECTRIC TAIWAN CO.,LTD

Taipei FA Center SETSUYO ENTERPRISE CO., LTD

Ho Chi Minh FA Center

MITSUBISHI ELECTRIC

VIETNAM COMPANY

ASEAN FA Center

MITSUBISHI ELECTRIC ASIA PTE.LTD.

LIMITED

MITSUBISHI ELECTRIC CORPORATION Factory Automation Systems Group

Hanoi FA center Mitsubishi Electric Vietnam Company Limited Hanoi Branch

North America FA Center MITSUBISHI ELECTRIC AUTOMATION, INC.

Mexico Monterrey FA Center Monterrey Office, Mitsubishi Electric Automation, Inc.

Mexico FA Center Querétaro Office, Mitsubishi Electric Automation, Inc.

Mexico City FA Center Mexico FA Center Mexico Branch, Mitsubishi Electric Automation, Inc.

Brazil FA Center Mitsubishi Electric do Brasil Comércio e Serviços Ltda.

Brazil Votorantim FA Center MELCO CNC do Brasil Comércio e Serviços S.A.

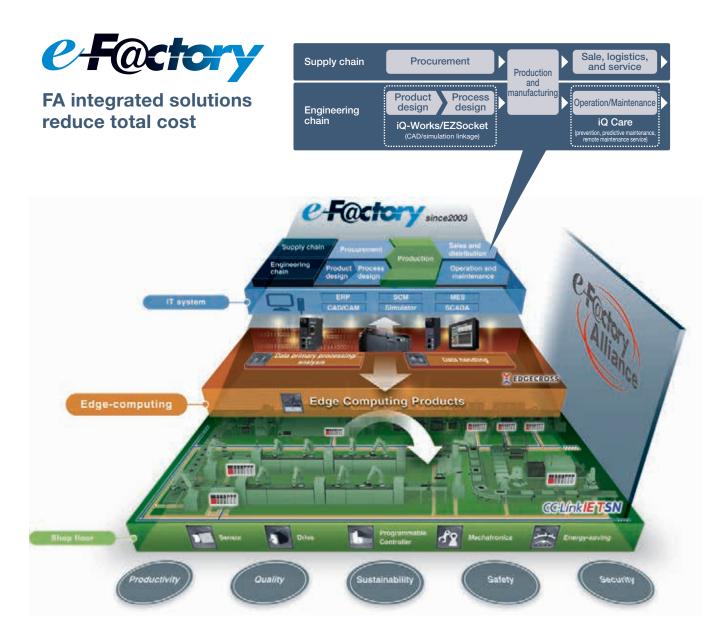
Tianjin FA Center -MITSUBISHI ELECTRIC

AUTOMATION (CHINA)LTD.

Beijing FA Center MITSUBISHI ELECTRIC

AUTOMATION (CHINA)LTD.

China


Shanghai FA Center MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD.

Guangzhou FA Center MITSUBISHI ELECTRIC AUTOMATION (CHINA)LTD.

This solution solves customers' issues and concerns by enabling visualization and analysis that lead to improvements and increase availability at production sites.

Utilizing our FA and IT technologies and collaborating with e-F@ctory Alliance partners, we reduce the total cost across the entire supply chain and engineeringchain, and support the improvement initiatives and one-step-ahead manufacturing of our customers.

Overall production information is captured in addition to energy information, enabling the realization of efficient production and energy use (energy savings).

Trademarks

PROFIBUS, PROFINET, and PROFIsafe are either trademarks or registered trademarks of PROFIBUS & PROFINET International. DeviceNet, EtherNet/IP, and CIP safety are either trademarks or registered trademarks of ODVA.

EtherCAT is a trademark of Beckhoff Automation GmbH. Safety over EtherCAT is a trademark of Beckhoff Automation GmbH. MODBUS is a registered trademark of SCHNEIDER ELECTRIC USA, INC. BACnet is a registered trademark of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Ethernet is a registered trademark of Fuji Xerox Corporation in Japan. CC-Link IE TSN and CC-Link IE Field Network Basic are registered trademarks of CC-Link Partner Association. QR Code registered trademark of DENSO WAVE INCORPORATED.

App Store is a service mark of Apple Inc. Google Play and the Google Play logo are trademarks of Google LLC. Other company and product names herein are the trademarks and registered trademarks of their respective owners.

A Safety Warning

To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use.

YOUR SOLUTION PARTNER

Mitsubishi Electric offers a wide range of automation equipment from PLCs and HMIs to CNC and EDM machines.

A NAME TO TRUST

Since its beginnings in 1870, some 45 companies use the Mitsubishi name, covering a spectrum of finance, commerce and industry.

The Mitsubishi brand name is recognized around the world as a symbol of premium quality.

Mitsubishi Electric Corporation is active in space development, transportation, semi-conductors, energy systems, communications and information processing, audio visual equipment and home electronics, building and energy management and automation systems, and has 237 factories and laboratories worldwide in over 121 countries. This is why you can rely on Mitsubishi Electric automation solution - because we know first hand about the need for reliable, efficient, easy-to-use automation and control in our own factories.

As one of the world's leading companies with a global turnover of over 4 trillion Yen (over \$40 billion), employing over 100,000 people, Mitsubishi Electric has the resource and the commitment to deliver the ultimate in service and support as well as the best products.

_____,..._,...

Medium voltage: VCB, VCC

Power monitoring, energy management

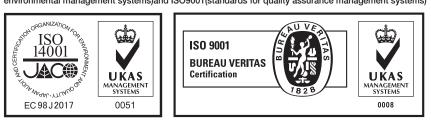
Compact and Modular Controllers

Inverters, Servos and Motors

Visualisation: HMIs

Numerical Control (NC)

Robots: SCARA, Articulated arm



Processing machines: EDM, Lasers, IDS

Transformers, Air conditioning, Photovoltaic systems

Mitsubishi Electric Corporation Nagoya Works is a factory certified for ISO14001 (standards for environmental management systems) and ISO9001(standards for quality assurance management systems)

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN